

Web-Based Static Source Code Analysis

Information Security MSc Dissertation

Shaun Webb

sw01229@surrey.ac.uk

mailto:sw01229@surrey.ac.uk

Web-Based Static Source Code Analysis Shaun Webb

1

TABLE OF CONTENTS

Abstract .. 3

Acknowledgements .. 3

I. Chapter 1 – Introduction.. 4

A. Introduction ... 4

II. Literature Review ... 5

A. Top ten most critical web application security risks.. 5

B. Defensive programming is not enough ... 7

C. The use of PHP ... 9

D. Program Analysis ... 12

1. Program Analysis in the Security Landscape ... 12

2. Dynamic Program Analysis .. 13

3. Static Source Code Analysis... 14

III. Development ... 31

A. Development methodology ... 31

1. Software Development Life Cycle ... 31

2. Chosen Methodology .. 32

B. Requirements gathering and analysis ... 33

1. Functional requirements ... 33

2. Non-Functional requirements ... 36

C. Design .. 38

1. Components .. 38

2. Architecture .. 39

3. Activity diagram UML .. 41

4. UI Design Mock-up .. 41

5. Summary ... 44

D. Implementation ... 44

1. Choice of languages and tools... 45

2. System Functionalities .. 46

E. Testing ... 58

1. Unit Tests .. 58

2. UI Automation ... 60

F. Evaluation .. 61

1. Evaluating against the requirements .. 61

2. Evaluating against other tools ... 66

3. Deployment ... 69

Web-Based Static Source Code Analysis Shaun Webb

2

G. Maintenance.. 70

H. Summary.. 71

IV. Conclusion .. 71

A. Future work ... 72

1. Broader Scope ... 72

2. Development work .. 72

3. Static Analysis as part of the build process ... 73

4. Advanced detection and verification .. 73

V. Glossary.. 74

VI. References ... 75

Web-Based Static Source Code Analysis Shaun Webb

3

ABSTRACT

Web applications have become profoundly widespread and relied upon for everyday use within our society.

This brings many benefits but also introduces numerous implications regarding the security of such

applications and the data it manipulates. Cyber security issues are at an all-time high and continue to cause

great concern. Understanding the threat landscape and reducing the attack surface is therefore pivotal in

moving towards a safer internet. Training developers can be difficult and training them on security related

concerns even more challenging. Tools such as static source analysers have a substantial future in web-based

software development projects. They can automatically detect software security issues in code even before

being deployed to a real environment. In this project a modern static source code analyser is built and

evaluated against competitive tools. Research is conducted on how one would build such a tool and then

further consideration looks at how they can be better integrated into the software development life cycle.

The project was motivated by first-hand industry experience demonstrating the lack of software verification

tools being used.

ACKNOWLEDGEMENTS

I would like to take this opportunity to offer my sincerest gratitude to my dissertation supervisor Dr Lee Gillam

for providing professional support and guidance throughout the development of this project. Dr François

Dupressoir for offering personal support throughout the academic year as both a personal tutor and

programme leader. Finally, thank you to my father, Leonard Webb who has suffered from a traumatic brain

injury, dementia, and other issues but has provided me with a lifetime worth of support.

Web-Based Static Source Code Analysis Shaun Webb

4

I. CHAPTER 1 – INTRODUCTION

A. INTRODUCTION

Cyber-crime has never been more prevalent and the need for secure systems is critical. Industries from

Aerospace, Education, Banking, Healthcare and more rely on software every day. There are massive potential

consequences for downtime of critical systems. The WannaCry ransomware attack infected around 200,000

computers across 150 countries, the UK’s NHS were also affected causing around £92 million in damage

(National Health Executive, 2018). In 2018 alone there were around 137.5 million new malware samples (AV-

TEST, 2019). In the UK cybercrime now accounts for more than 50% of all crimes (Zaharia, 2019). With

organisations and software being targeted on such a large scale, it evident that more needs to be done to keep

our data safe.

Developers are not trained on security issues enough resulting in insecure code vulnerabilities being

widespread (Zorabedian, 2017). In the 2017 Application Security Report, published by Cybersecurity Ventures

(2018) it was estimated that 111 billion lines of new software code is generated by developers every year. The

fast paced and large-scale nature of software makes identifying security issues ever more challenging.

Therefore, it is essential for organisations and governments to attempt to secure their systems and software.

Bugs, defects and logic flaws in software are the primary cause of commonly exploited vulnerabilities. Secure

coding practices can help prevent these common issues, but they require developers have enough time,

training and take advantage of frequent in-depth code reviews. Most common security software issues derive

from a small subset of programming issues (OWASP, 2017), other issues are specific to certain languages such

as Buffer Overflows in C.

The General Data Protection Regulation (GDPR) was introduced in May 2018, since then, there has been an

increase in cyber security awareness and funding for security departments in order to prevent fines being

issued for inadequate data handling (Department for Digital, Culture, Media and Sport, 2019).

A range of policies and procedures need to be in place throughout an organisation in order to apply good

security principles. The planning stage looks at risk identification, risk assessment and risk control strategies.

The defend control strategy is the preferred approach as it attempts to directly prevent the exploitation of the

vulnerability. Software development teams can take steps to help reduce vulnerabilities in software before

and after deployment.

Web applications are exposed to myriad security vulnerabilities, many of which are related to malicious user

string input. Web applications typically accept arbitrary user input through a variety of different sources.

Cookies, URL parameters, form fields and more can all be manipulated to send malicious data. The most

common web-based examples of such vulnerabilities are SQL injections, which can potentially expose database

information, or cross-site scripting, which allows an attacker to execute their own code in a user’s browser.

Web-Based Static Source Code Analysis Shaun Webb

5

Finding vulnerabilities in code is difficult and may require extensive testing in order to identify and fix them.

Large amounts of libraries from a variety of sources are commonly used, this makes finding such vulnerabilities

even harder. A good patching policy can help ensure software is up to date and good internal testing with

security trained engineers is needed to find most issues.

A program analyser is one type of control that can reduce the number of vulnerabilities. Although program

analysis has proved to be effective at reducing vulnerabilities, they have still not gained widespread use,

especially in small and medium-sized enterprises (Gleirscher, et al., 2014). Unseen security issues could have

potentially been identified and prevented using static analysers. They can be used before deployment or

managed in continuous integration of software development projects to aid developers by finding security

issues in code.

To facilitate the detection of such vulnerabilities in web-based applications a static source code analyser has

been developed for this project that employs techniques such as lexical and taint analysis. These are

commonly used in programming language compilers to verify the correctness of the code, in static analysers

they are used to detect security vulnerabilities or bugs. Such applications are difficult to develop and even the

state of the art can’t do it perfectly. They struggle and, in many cases don’t even attempt to analyse

obfuscated code, furthermore there are even theoretical constraints proven by Rice’s theorem that prevent all

issues being found in all cases. The effectiveness of static analysers is evaluated and tested against a range of

code samples including obfuscated code. Static analyses provide their challenges, but they still have their value

within software development projects. Conducting research on how to develop a static analyser and the

techniques currently used, improvements in both detection and integration into software projects can be

established.

II. LITERATURE REVIEW

A literature review is critical to understand the relevant knowledge and background information supporting

the topic. It is crucial to understanding what already exists to aid the development of the project application. It

also identifies a gap within the literature and industry that this section tries to address, in relation to web-

based static analysis.

A. TOP TEN MOST CRITICAL WEB APPLICATION SECURITY RISKS

The Open Web Application Security Project (OWASP) is an online community that provides articles,

methodologies, documentation, tools, and technologies to help improve web application security. Their most

known project is the OWASP Top 10.

The OWASP Top 10 is a report that outlines the main security issues for web applications, focusing on the 10

most critical risks. Security experts from all over the world work together to devise the list. OWASP refers to

Web-Based Static Source Code Analysis Shaun Webb

6

the report as an awareness document that companies should incorporate into their processes to minimize and

mitigate security risks (Cloudflare, 2019).

The OWASP Top 10 2017 list can be seen below with brief explanations of each:

1. Injection

Injection attacks occur when input data from the user is not validated or sanitized and malicious code or

commands are passed and executed (typically) on the server. Common injection attacks are SQL, OS

command, Object Graph Navigation Library (OGNL) injections and more.

2. Broken Authentication

Broken authentication is where attackers are able to compromise authentication systems. This ranges from

the use of default admin passwords, to systems that allow brute force or automated attacks to be performed,

and even mismanagement of session IDs.

3. Sensitive Data Exposure

Sensitive data exposure is where data is not securely handled using secure cryptographic algorithms correctly

and sensitive data such as user passwords or credit card information is exposed.

4. XML External Entities (XXE)

Web applications that parses XML input may be insecure and can be exploited by attackers. Less complex data

formats such as JSON are suggested to avoid this.

5. Broken Access Control

Broken access control covers a range of issues from allowing directory traversal to insecure direct object

references where modifying the URL parameters allows attackers to perform privilege escalation and even

impersonate other users.

6. Security Misconfiguration

Web-Based Static Source Code Analysis Shaun Webb

7

Any level of the application stack can be misconfigured resulting in attackers gaining unauthorized access or

knowledge of the system.

7. Cross-Site Scripting (XSS)

XSS is the second most prevalent issue in the list. It involves JavaScript being used by attackers for malicious

intent, common examples including sending other users a message with hidden code inside that steals their

data. User input should be correctly validated or escaped to prevent this. Cross-site scripting has been

included in every OWASP Top 10 list that has ever been devised.

8. Insecure Deserialization

Serialization takes objects from application code and converts them into a format for another purpose.

Deserialization is the opposite, it converts serialized data back into objects the application can use. An insecure

deserialization exploit is the result of deserializing data from untrusted sources that can result in DDoS and

remote code execution attacks (Cloudflare, 2019).

9. Using Components with Known Vulnerabilities

Using legacy or unpatched systems results in systems being exposed to unnecessary risk. A patch management

process can be crucial in ensuring software remains updated (Whitman & Mattord, 2014).

10. Insufficient Logging & Monitoring

Effective logging and monitoring systems can help detect breaches as soon as they occur. Organisations need

to do more to reduce data breach detection time.

B. DEFENSIVE PROGRAMMING IS NOT ENOUGH

Defensive programming is a technique often used to reduce bugs present in code, like those seen in the Top 10

list. They provide good ways to improve the quality of the code and improve error handling. Good defensive

programming makes bugs both easier to find and diagnose. However, defensive programming alone does not

guarantee secure software. Security issues can still arise when the defensive code does not go far enough with

its checks.

Web-Based Static Source Code Analysis Shaun Webb

8

Consider the following JavaScript functions that display a message to a webpage.

function print1(message){

 document.write(message);

}

function print2(message){

 if (message == null){

 document.write("Message cannot be null");

}else{

 document.write(message);

 }

}

Figure 1. Vulnerable write message example

For application layer purposes the message might not allow null values, so a check can be done to ensure it is

valid (print2 function). Other examples include ensuring the message is over a certain length depending on the

application requirements, etc. This type of defensive programming does not account for security related

exploits. Software engineers are not trained enough to be aware of secure coding practices (Lent, 2014).

Calling the print2 function as seen below (Fig 2) will cause a basic cross-site script to be executed.

print2("<script>alert('XSS');</script>")

Figure 2. XSS attack on write message example

As briefly introduced in the Top 10 OWASP issues, cross-site scripting (XSS) is a web-based security

vulnerability. It enables attackers to inject malicious scripts into web pages that other users will view. An

example of such an attack is to send a message to another user on a web application, when the message is

opened by the other user the script is executed and user data from the website could be stolen, content on

the web page could even be manipulated. Any type of web application can suffer from a form of XSS, with

varying levels of severity. Most web applications use input from a user and output it, unfortunately it is

common for the input to not be correctly validated or encoded.

The example given in the print3 function below (Fig 3), the null check is still performed to handle application

side error handling, then an additional line is added to ensure the input message is encoded as special

characters to prevent a cross-site script attack.

Web-Based Static Source Code Analysis Shaun Webb

9

function print3(message){

 if (message == null){

 document.write("Message cannot be null");

 }else{

 message = encodeURIComponent(message);

 document.write(message);

 }

}

Figure 3. XSS fix for write message example

Instead of the webpage rendering the message as JavaScript code. It changes <script> into %3Cscript%3E (Fig

4). This means that the page will now view the message as escaped text in the form of special characters

instead of it being interpreted as JavaScript code.

%3Cscript%3Ealert('XSS')%3B%3C%2Fscript%3E

Figure 4. Special characters encoded for XSS write message example

A server-side language may be responsible for displaying the received message, that language will have a built-

in function with similar capabilities.

C. THE USE OF PHP

W3Techs (2019) survey indicates that 79% of websites use PHP as their server-side programming language,

deeming it the most commonly used language online. PHP even powers WordPress, which accounts for around

25% of the websites in use today (Thor, 2018). A WhiteSource report shows that PHP is 2nd in the total number

of reported vulnerabilities per programming language (Goldstein, 2019). The report is based off the total

number of CWEs for each language. C originally dates back to 1972 and has been written more than any other

language, so it makes sense that it has the highest number of reported vulnerabilities. PHP focuses solely on

web-based applications.

Web-Based Static Source Code Analysis Shaun Webb

10

Figure 5. Usage of server-side programming languages

Other server-side languages make up for less than 0.1% and have not been included in the graph.

Figure 6. Total reported open source vulnerabilities per language

PHP covers all the OWASP top 10 issues and more, combined with the fact that it is the most commonly used

server-side programming language with the 2nd most reported open source vulnerabilities makes it an obvious

candidate to target.

Erlang

Perl

ColdFusion

JavaScript

Python

Scala

Static Files

Ruby

Java

ASP.NET

PHP

0.1%

0.3%

0.5%

0.7%

1.1%

1.4%

2.1%

2.6%

4.0%

11.1%

79.0%

Usage of server-side programming languages

C++

Python

JavaScript

Java

PHP

C

6%

6%

11%

12%

17%

47%

Total reported open source vulnerabilities per language

Web-Based Static Source Code Analysis Shaun Webb

11

PHP has grown and changed overtime rather than deliberately engineered with security goals in mind. This

resulted in making writing insecure PHP applications far too easy and common. The most common pitfalls of

the language have been laid out in the OWASP Cheat Sheets book (Woschek, 2015), below is a short summary

of those pitfalls.

• Weak typing

PHP is weakly typed, which means that the interpreter will predict the data type required. This can cause an

incorrect data type such as the string “0” being allowed instead of the integer 0. Instead the use of === should

be employed more in place of == to enforce type correctness.

• Exceptions and error handling

Numerous PHP libraries report errors using warnings and do not prevent code execution.

• Configuration - php.ini

PHP behaviour is managed by a php.ini configuration file. This include things how errors are handled, making it

very difficult to write code that works as expected in all circumstances.

• PHP functions

Native PHP functions like mysql_real_escape_string appear to provide security, but often do not deal with

security issues. In later versions of PHP these functions are deprecated and eventually removed but not all

organisations have good patch management policies in place, placing them at risk when they continue to use

old versions of libraries and insecure code.

• Template language

PHP is essentially a template language that doesn’t escape HTML by default, leaving it susceptible to cross-site

script attacks.

Web-Based Static Source Code Analysis Shaun Webb

12

D. PROGRAM ANALYSIS

We have seen that defensive programming is not enough and secure coding techniques are required. This is a

manual process that takes time and requires developers to have extensive security and programming

knowledge.

Automated program and source code analysis tools provide a way of scanning code bases for vulnerabilities.

The sections below look at the types of program and source code analysers available, the components which

they are comprised of and details on what they can be used for, such as finding XSS vulnerabilities or detecting

plaintext passwords left in code.

1. PROGRAM ANALYSIS IN THE SECURITY LANDSCAPE

Understanding the security landscape is important when attempting to target a specific area of security. All

layers seen in the defense in depth (Fig 7) below need to be adhered to, this will reduce the overall attack

surface an organisation will face. Reducing the attack surface is one of the biggest challenges organisations

face (Zorz, 2019).

Figure 7. Defense in depth (Modern CISO, 2018)

Web-Based Static Source Code Analysis Shaun Webb

13

Program analysis is located at the application layer and looks at a very specific security issue. Application

security covers the measures taken to improve the security of an application, techniques to do this include

discovering, fixing and preventing security vulnerabilities. Program analysis is a process that can improve

application security.

2. DYNAMIC PROGRAM ANALYSIS

Dynamic program analysis is the analysis of software that is currently being executed on a system, with either a

virtual or physical CPU.

Dynamic analysis targets the current instructions being executed, and as such must be executed with sufficient

test inputs to broaden the range of code coverage that will be monitored. Dynamic program analysis tools may

require third-party libraries to be loaded and even recompilation of program code may be needed. Dynamic

testing can be performed in myriad ways from unit, integration, system and acceptance tests to the use of third-

party tools. Unit tests are the most common method of dynamic program analysis. A summary of the advantages

and disadvantages of this type of analysis have been outlined below (Ghahrai, 2018).

A) ADVANTAGES OF DYNAMIC ANALYSIS

• Can detect dependencies that are not possible in static source code analysis as other code bases are

being relied upon using reflection, polymorphism or dependency injection. This allows for analysis of

applications even when the original code is not accessible.

• Deals with real input data that should closely imitate real usage of the system.

• Runtime environment vulnerabilities can be identified and has access to the environment’s full security

stack.

• Can identify false negatives that were not caught by static source code analysis.

• Can be used in conjunction with static source code analysis findings.

• Supported by any program regardless of language and environment.

• Much easier to detect vulnerabilities when code obfuscation is used compared to static analysis (Moser,

et al., 2007).

B) DISADVANTAGES OF DYNAMIC ANALYSIS

• May negatively impact the performance of the application so analysis be should be done during the

testing phase and during a suitable time for maintenance to minizine downtime.

• Cannot guarantee full code coverage as the analysis is conducted based on user or automated tests.

• Analysis tools can give a false sense of security to developers and issues can be overlooked.

• False positives and false negatives will be produced as analysis cannot guarantee completeness.

Web-Based Static Source Code Analysis Shaun Webb

14

• Dynamic program analysis is only as effective as the rules and data they use to scan with.

• It is difficult to trace the vulnerability back to a specific line in the code, taking longer to debug.

• May be difficult or impossible to implement with Cloud Platform as a Service providers if binaries are

proprietary and the environment is out of the developers control.

3. STATIC SOURCE CODE ANALYSIS

Static source code analysis is the analysis of software that is not currently being executed on a system.

It does this by reading and interpreting the source code or compiled code used to make the software. This checks

the code against a set of rules and known vulnerabilities and attempts to detect any possible security issues.

Static source code analysis tools allow developers to quickly check the security and quality of their code with

little interruption or delay. The analysis should be ongoing throughout the early development stages and be

used in the Software Development Life Cycle (SDLC) alongside other automation tools such as Jenkins. Security

issues found can then be flagged and developers can determine if action is required to update the code. Issues

can be flagged as potential security issues and only show the type of security issue it presumes it is vulnerable

to, while other tools may offer a more elaborate description that may include sink traces.

A) ADVANTAGES OF STATIC CODE ANALYSIS

• Able to identify the vulnerability at the exact line in the source code.

• Can be used to train software developers on how to write secure code.

• Easy to integrate alongside developers as they write code.

• Allows for a quick turnaround of fixes that are seen in the early stages of the development life cycle.

• Allows for full code coverage regardless of the cyclomatic complexity in a single file.

• Able to detect defects such as unreachable code, unused variables, uncalled functions and more.

• Platform and compiler agnostic as the source code to make the program is being analysed rather than

the program itself.

• Can be performed quickly on source code with little to no action required from the developer when

testing input values.

• Easy to implement with Cloud Platform as a Service providers as source code can be checked before-

hand.

B) DISADVANTAGES OF STATIC CODE ANALYSIS

• Can be time consuming to analyse the results.

Web-Based Static Source Code Analysis Shaun Webb

15

• Automated tools still produce false negatives and false positives.

• Difficult to predict what the user will do or what will be passed as input, providing challenges to protect

and correctly validate data.

• Can produce a false sense of security that all issues are being addressed. Such tools should only be used

as a safety net and not relied upon entirely.

• Difficult to determine vulnerabilities for a wide range of platforms with high level of accuracy as some

environments may be vulnerable and others may not, even with the same code. Due to the use of third-

party libraries, code from other files being inaccessible, and version detection of other software may

result in missed vulnerabilities.

• Difficult to near impossible to detect true code behaviour for interpreted languages when high levels

of code obfuscation are used (Moser, et al., 2007).

• Difficult to prove the existence of an issue as code is not executed.

C) CHALLENGES IN STATIC ANALYSIS

Building a static analyser that is accurate, robust and diverse in its feature set is proven to be difficult. Current

code plagiarism systems can’t even detect code changes that have been obfuscated. Compiler techniques are

very similar to static analyser systems. Compilers for modern programming languages are inherently complex.

Static analysis attempts to take semantic and syntactic analysis one step further by predicting behaviour and

weaknesses in code, libraries and system architecture. Server and client-side code has to be considered for

web-based analysers. Currently, even the best tools in the world do not find all security weaknesses in all

circumstances and there are even theoretical proofs that show why this is impossible. The section below

explains some of the difficulties developers will face when building such systems.

(1) THE HALTING PROBLEM AND RICE’S THEOREM

The halting problem asks whether the execution of a specific program for a given input will terminate. The

halting problem was proven to be undecidable1 by Alan Turing (1937). That is, no algorithm can solve it for all

programs and all inputs.

This notion of using one algorithm to analyse another is fundamental to the theory of computation (Sipser,

2012).

1 In computability theory, an undecidable problem is a decision problem for which it is proven to be impossible
to construct an algorithm that always leads to a correct yes or no answer.

Web-Based Static Source Code Analysis Shaun Webb

16

This complicates any attempt to predict program behaviour, this includes the predictions made in static

analysers. We can make predicting almost any programs behaviour equivalent to predicting the termination of

a nearly identical program.

The pseudocode below simulates this problem.

if program P halts

 call unsafe()

Figure 8. Rice's theorem simple code example

In this example, in order to determine whether the unsafe() code is ever called the analyser must solve the

halting problem.

Rice’s theorem proves that non-trivial properties of programs are undecidable (Jones, 1997). A trivial property

is one that holds either for all languages or for none (Kumar & Garg, 1994). Therefore, determining security for

all types of programs is non-trivial.

Static analysers algorithms do their best to defy the undecidability of the halting problem, they attempt to

predict program behaviour. As this is proved to be undecidable, static analysers cannot claim to detect security

issues free of false positives and false negatives in all cases (Chess & West, 2007). This implies that static

analysis is a computationally undecidable problem.

The main focus of static analysers is to highlight potential security issues or bugs in code. The fact that they are

imperfect does not prevent them from having value.

(2) MODERN PROGRAMMING LANGUAGE FEATURES

The following features are just some of the challenges that modern programming languages give static code

analysers (Møller & Schwartzbach, 2018).

• Concurrency

• Higher-order functions

• Recursion

• Mutable records, objects, arrays

• Integer and floating-point computations

• Dynamic dispatching

• Inheritance

• Exceptions

• Reflection

• Developer bugs

Web-Based Static Source Code Analysis Shaun Webb

17

(3) CODE OBFUSCATION

Code obfuscation is the act of making code difficult to understand. This can be done for a variety of reasons

such as to protect intellectual property and attempt to prevent an attacker from reverse engineering

proprietary software. Malware commonly employ this technique to hide what the malicious code is really

doing to the system and to try and avoid anti-virus detection tools (Sikorski & Honig, 2012). An example of

such a project that obfuscates code is PyArmor.

Dynamic analysis will be affected less than static analysis as the obfuscation should not change the underlying

behaviour of the program. Disassemblers can be used to dynamically analyse applications, they transfer the

binary code into assembly code and the underlying behaviour can be inspected, common tools for this include

OllyDbg (Yuschuk, 2014) and IDA Pro (Hex-Rays SA, 2015).

Static analysis needs to read the source code directly and obfuscation can make this task more difficult. Below

is a short list of some obfuscation techniques that make static analysis difficult (Singh & Singh, 2018).

• Changing the order of code - code can be re-ordered to disrupt control flow.

• Insertion of Redundant Data - redundant data insertion can be used to trigger false positives making

the results difficult to analyse.

• Encryption - code can be encrypted and decrypted upon execution.

• Oligomorphic code - a different variation of the code decryptor is generated each time it is executed.

• Polymorphic code - changes the source code upon each execution but the underlying behaviour of the

application stays the same.

Deobfuscation is the act of taking obfuscated code and converting it back into its original form, or at least as

closely as possible. Certain obfuscation techniques rename variables and functions so they will look different,

but the underlying behaviour should still be the same even after obfuscation or deobfuscation.

A static analyser can try either:

A. Analyse obfuscated code and determine if the new changes have now made it vulnerability to certain

attacks.

B. Deobfuscate code back into its original format to determine if the original code has security

vulnerabilities that are still present in the obfuscated code.

Web-Based Static Source Code Analysis Shaun Webb

18

D) TYPES OF CODE ANALYSERS

(1) BINARY OR BYTE-CODE ANALYSIS

Languages such as C are compiled, and binaries are produced that can then be analysed by code analysers.

Binaries may add a layer of complexity when reading directly and trying to understand the behaviour, as

developers are more likely to be familiar with higher-level source code. Once standard behaviour has been

understood, analysing binaries can be easier as techniques like code obfuscation are less of an issue, due to the

fact that the underlying behaviour will be the same.

Binaries produced will differ depending on the compiler and the operating system targeted, causing difficulties

with broad range of coverage.

In Cloud Computing environments such as AWS Lambda, the Platform as a Service (PaaS) provider is responsible

for handing validation and proprietary compilation is done and access to the binaries is not granted, in these

circumstances binary code analysis will not work (Zahger, 2017). Manual compilation to simulate the cloud

environment is possible but not guaranteed.

(2) SOURCE CODE ANALYSIS

Source code analysis can be applied to both compiled and interpreted languages, allowing for greater coverage

of applications to be analysed.

Expert level knowledge of the targeted programming language is essential when creating static code analysers.

Difficulties arise with the diverse methods that programmers use to write code, even simple instructions that do

the same thing can be written differently. Programs with high cyclomatic complexity and large codebases

introduce challenges when attempting to identify possible vulnerabilities. A single source code file may not be

vulnerable by itself, however, once combined with other files or third-party libraries the behaviour of the

program may change dramatically. Static source code analysis may not even have access to these files to

determine the true nature of all the code, resulting in false negatives and false positives.

E) TECHNIQUES FOR STATIC CODE ANALYSIS

In order for static code analysers to be comprehensive, a variety of techniques can be used to maximize its

vulnerability identification capabilities. The internals of static analysis tools are similar to that of compilers.

Regardless of the analysis techniques used, all static analysis tools that focus on security vulnerabilities are

roughly built in the same way. They all accept code, build a model to gain an understanding of what the code is

doing, analyse that model with a large dataset of security knowledge, and then finally display the results back to

the user.

Web-Based Static Source Code Analysis Shaun Webb

19

Figure 9. Diagram of the components typically required to create a static code analyser

(1) DATA FLOW ANALYSIS

Data flow analysis is used to collect run-time information about data in the code while it is not being executed

(Wögerer, 2005). It is commonly used in compilers for optimization. They examine the way data moves through

programs. In the case of code analysers this is useful to understand if the variable is being used in an insecure

way as the variable itself may not be insecure and the action may not be insecure, but once combined, it results

in a vulnerability being exposed.

Data flow analysis is commonly used with control flow graphs to visually determine the paths such data may

take through a program during its execution.

(2) CONTROL FLOW GRAPH

A control flow graph can be devised using graph notation to gain a better understanding of all the paths that

might be traversed in a program. Each code block is determined by a node and the sequential path in which the

execution is done can be followed, branching where conditionals determine execution of different paths. For

example, a particular vulnerability may only be present following one route but not the other. Source code

analysers require full understanding of the control flow to determine if vulnerabilities exist (Rao, 2019).

Web-Based Static Source Code Analysis Shaun Webb

20

Table 1. Control Flow Graph with Code Examples

Control Flow Graph Code Example

if (date("H") < 20) { // A

 echo "Have a good day!"; // B

}else{

 echo "Have a good night!"; // C

}

echo "Finished"; // D

$x = 1;

while($x <= 5) { // A

 echo "The number is: $x
"; // B

 $x++; // B

}

echo "Finished"; // C

(3) TAINT ANALYSIS

Taint analysis is used to check if a variable can be set via user input and traces them to a vulnerability checking

for things such as correct sanitization or validation depending on the expected behaviour (Barbosa, 2009). For

example, allowing the user to input data via HTTP GET may lead to an insecure direct object reference or even

a SQL injection. Determining which variables can be tainted by user input helps the source code analyser gain a

better understanding of the security of the code, however, difficulties arise when different files or functions are

used as it may be unclear if the returned data is potentially input by the user.

(4) LEXICAL ANALYSIS

Lexical analysis is traditionally used in the first stage of a compiler and are essential for source code analysers.

They convert source code into a series of tokens, these tokens make the analysis easier and the parsing engine

understands what the syntax means.

In the popular web language PHP the function token_get_all() parses the given source string into PHP language

tokens using the Zend engine's lexical scanner (php.net, 2019).

Web-Based Static Source Code Analysis Shaun Webb

21

An OWASP (2019) example is used below to shows the output of tokenized PHP source code.

Input

<?php $user = "Shaun"; ?>

Figure 10. Input of code to be tokenized

Output

T_OPEN_TAG

T_VARIABLE

=

T_CONSTANT_ENCAPSED_STRING

;

T_CLOSE_TAG

Figure 11. Output tokenized code

F) FEATURES OF STATIC CODE ANALYSIS

(1) VULNERABILITY DETECTION

The exact nature of which types of vulnerabilities will the analyser detect needs to be understood and

developers should be able to answer the following questions.

• What languages and environments will the tool target?

• What types of vulnerabilities can it detect?

• Does it require complete code bases, or will it only work with single files?

• Can it work with only the source code or also the binaries?

• Can it be integrated into an IDE (Integrated Development Environment)?

• Will it support different programming paradigms?

• Who will use the tool and how will they use it?

• Is there a business plan for the tool?

• How will it output the results?

Once the requirements have been understood then the need for the tool will be clear and the techniques

explained in “Techniques for Static Code Analysis” can be used to help design and implement the features.

Web-Based Static Source Code Analysis Shaun Webb

22

(2) EVALUATING THE TOOLS EFFECTIVENESS WITH SAMPLE SETS

An effective way of testing and evaluating the effectiveness of the tool, is to use it against relevant data sets.

Version control projects such as GitHub and Bitbucket are great platforms to scrape code to test with a static

code analyser. The sections below explain the rationale behind why scraping code is important and simple

suggestions on how this may be done with examples are given.

(A) TARGETING GITHUB REPOSITORIES

Scraping GitHub for vulnerable repositories can easily be a project on its own. Projects such as GHTorrent mirror

millions of public GitHub repositories and have attempted to provide queries (Gousios, 2013), however for an

attacker to be able to feasibly search for certain vulnerabilities the sample set needs to be reduced dramatically.

If a specific language such as PHP or cloud environment code such as AWS is to be targeted, then only code

bases that meet those requirements should be scraped.

A few automation solutions exist that can be easily be integrated into the static source code analyser or even

act as a standalone application.

First web pages with relevant repositories need to be found, after that automation scraping tools can be

modified to target them.

The official GitHub search page2 allows for simple keywords to be searched.

Figure 12. GitHub search page screenshot

The resulting URL https://github.com/search?q=PHP&ref=simplesearch can be used later with automation tools

to recursively scrape each repository. The sorting feature can be useful here as the “Best Match” option usually

displays famous repositories that have many people working on them, repositories with this kind of expose are

usually less susceptible to vulnerabilities but could still be scanned to be sure.

Another method is to view the topic or language that you wish to search through GitHub topics. The query strings

can be set as seen in Figure 13 below.

2 https://github.com/search

https://github.com/search?q=PHP&ref=simplesearch
https://github.com/search

Web-Based Static Source Code Analysis Shaun Webb

23

Figure 13. GitHub topic search URL example

The resulting page targets AWS specific projects where the main programming language used is PHP.

Figure 14. GitHub AWS Topic Page for PHP

This URL seen in Figure 13 makes finding potential vulnerable repositories with automated tools much easier as

the sample set has been reduced dramatically removing repositories that are outside of our requirements.

(B) AUTOMATED SCRAPING

A range of automated tools exist for web scraping depending on the language or environment a developer

wishes to use. A few potential solutions have been briefly highlighted below. Many other variants and

techniques can be used instead of the discussed methods.

Web-Based Static Source Code Analysis Shaun Webb

24

(I) REQUESTS FOR PYTHON

Requests for Python is a module that simplifies HTTP requests, so minimal code is required.

import requests
print (requests.get('https://github.com/topics/aws?l=php&o=desc&s=updated').text)

Figure 15. Requests scraping example

Using the simple snippet of code from Figure 15 the HTML for the AWS topic page is obtained. The text then

needs to be parsed to obtain the repositories URL, these can be collected and requested again. A method of

saving and scanning the targeted code in the repositories needs to be devised using a similar technique.

(II) SELENIUM

Selenium is perhaps the most powerful automated tool, allowing for even UI automation and testing. For our

example we only need simple GitHub pages and repositories to be copied so it is cumbersome when used only

for these purposes, as it requires integration with a browser on the host system (Mitchell, 2015).

(III) SCRAPY

Scrapy is a python-based tool targeted more towards scraping than Requests as it does much more than

simple HTTP GET and POST requests with parsing tacked on. Scrapy provides all of the functions needed to

parse data from HTML easily, it automatically preserves sessions, follows redirects, attempts failed requests

and more (Scrapy, 2018), making it an easy to use all in one solution for web automation.

(IV) POWERSHELL

PowerShell is a powerful scripting language built into Windows, it can even be used to invoke web requests

and perform basic automation (Truher, 2019). The script in Figure 16 was created to demonstrate a single

method on how the GitHub topic page and repositories can be scraped.

Web-Based Static Source Code Analysis Shaun Webb

25

Figure 16. PowerShell scraping example

(3) FIND PASSWORDS/KEYS IN CODE, FIND ATTACKS

There are a variety of software engineering processes that can identify the previously mentioned issues, such

as extensive code reviews, unit tests, manual testing, security framework tools and more. All of these rely on

the fact that the developers are trained in security techniques and that the tools code covers and correctly

identified the exploit. Common tools use dynamic code analysis, where the application is running live and the

program is tested from a user’s point of view.

Static source code analysers have the capability to detect a wide range of different exploits including the

detection of secret keys and credentials in source code. Insecure use of cryptography is difficult to correctly

identify but the use of known weak cryptographic algorithms can be highlighted. Hashed passwords hard

coded in source code can be checked against known rainbow tables to verify if the hash is already known and

suggestions can be made to the developers or how to correctly use credentials in programming projects or

suggest the use of higher entropy passwords.

Source code analysers can be used to check for API keys and passwords left exposed in code. A range of ways

to detect sensitive keys in GitHub and code directly are explained in the sections below.

(A) KEYWORD SEARCH

Searching for keywords in GitHub code is made easy by the search feature built into the website. It allows for a

specific keyword to be searched in 125 million public repositories (GitHub, 2019).

This method was used by hackers in 2013 to steal SSH keys looked for files that were named id_rsa or

contained the string “BEGIN RSA PRIVATE KEY” which is used in private key files when generated by ssh-

keygen. At that time GitHub suspended its search function temporarily (Sinha, et al., 2015). The method is still

quite effective albeit a slow and methodical process in determining if the keys work. Targeting the most

recently indexed results lowers the chance that the key no longer has permission. Users working on small

Web-Based Static Source Code Analysis Shaun Webb

26

projects are likely to think that they will not be targeted and could leave sensitive data hard coded in source

code.

The RSA private key search in code returns over 1.5 million results (Fig 17).

https://github.com/search?o=desc&q=-----BEGIN+RSA+PRIVATE+KEY-----&s=indexed&type=Code

Figure 17. Search result RSA Private key example

https://github.com/search?q=BasicAWSCredentials&type=Code can be used to find the keyword

“BasicAWSCredentials”, a common keyword used in code for the AWS SDK (Sinha, et al., 2015).

Figure 18. Search result AWS Credentials example

Other search terms can target specific frameworks that are known to be implemented incorrectly.

https://github.com/search?l=PHP&q=password+.co.jp+cake&type=Code uses the search terms “password”,

“.co.jp” and “cake”. Cake represents CakePHP, a PHP framework commonly used in Japan. Hundreds of emails

with working passwords are immediately visible in PHP config files. During the research on this project, working

passwords exposed in source code were detected and authors were notified.

Outside of GitHub, code can be simply searched with the built-in find feature supported by most Integrated

Development Environments (IDE), a keyword can be performed recursively in directories to find a match.

https://github.com/search?o=desc&q=-----BEGIN+RSA+PRIVATE+KEY-----&s=indexed&type=Code
https://github.com/search?q=BasicAWSCredentials&type=Code
https://github.com/search?l=PHP&q=password+.co.jp+cake&type=Code

Web-Based Static Source Code Analysis Shaun Webb

27

The keyword search method has a high false positive rate as it does not guarantee that the key or password is

used directly in code, and it may reference other parts of code that are not directly related directly. It also

relies upon knowledge of the SDK, library or framework to know what to search for, for example the AWS SDK

has multiple implementation methods that operate differently, and a single keyword search will not cover all

cases. Static analysers can look for these specific keywords in code and highlight potential data leakage.

(B) PATTERN-BASED SEARCH

Another method is to use pattern-based matching to search for keys. The previous method of using the official

GitHub search page does not work here as searching by regular expression does not work, so one of the

previously mentioned GitHub scraping solutions would have to be used.

Once code has been scraped literal strings can be searched using a predefined regular expression that is

known to match the keys used for a particular API provider. A simple pattern-based search can be much more

effective than keyword searching but is still prone to false positives. Explicit letter sequences such as “AKIA” in

Amazons Web Services Client ID allow for an improved detection accuracy rate.

Viennot, et al. (2014) and Sinha, et al. (2015) provide enough regular expressions to build a table that can be

used to detect a variety of service providers API keys in code (Table 2).

Table 2. Regular expression examples for pattern-based search

Service Provider Client ID Secret Key

Amazon AWS AKIA[0-9A-Z]{16} [0-9a-zA-Z/+]{40}

Bitly [0-9a-zA-Z_]{5,31} R_[0-9a-f]{32}

Facebook [0-9]{13,17} [0-9a-f]{32}

Flickr [0-9a-f]{32} [0-9a-f]{16}

Foursquare [0-9A-Z]{48} [0-9A-Z]{48}

LinkedIn [0-9a-z]{12} [0-9a-zA-Z]{16}

Twitter [0-9a-zA-Z]{18,25} [0-9a-zA-Z]{35,44}

These regular expressions can then be used to identify a variety of API keys in source code and even expanded

to find credit card details.

Web-Based Static Source Code Analysis Shaun Webb

28

(C) METHODS TO REDUCE FALSE POSITIVES

Improving keyword search is as simple as ensuring the list of keyword candidates are likely to produce

matches. This will vary by language, library and SDK used but in conjunction with a large data set useful

keywords can be collated. By improving the keywords used in the search, false positives can be reduced but

not completely removed.

Pattern-based search is still prone to producing false positives, however combined with simple heuristics they

can be improved dramatically.

Viennot, et al. (2014) used a technique to look for a matching Client ID and Secret Key that occurred within 5

lines of each other. This works well when API credentials are hard coded, as they are usually close to one

another, but this method fails when an ID and key are far apart.

G) COMPARISON OF THE EXISTING TOOLS

Table 3. Comparison of the existing tools

Tool name Languages

supported

Language

developed in

License What it offers Notes

Bandit Python Python Apache Shows severity and

confidence of detected

issues.

Output not perfectly

displayed in PowerShell

(Windows). Progpilot shows

display better in CLI.

Progpilot PHP PHP, Bash MIT Command line outputs

array with JSON, links

to CWE IDs.

Simple to use CLI. Output

easy to see issues with CWE.

Flawfinder C, C++ Python GPL CLI or formats for

HTML. CWE links for

known exploits.

Codacy.com Various Unknown Proprietary Webpage scans GtHub

repository and

produces a report.

Cannot see how it does

this.

Displays a nice breakdown of

potential issues split by

category, even analyses

cyclomatic complexity.

Web-Based Static Source Code Analysis Shaun Webb

29

Facebook Infer Java, C, C++,

and

Objective-C

OCaml Proprietary Wide range of features.

Comments are added in

code at specific lines to

help developers fix

bugs.

No support for web languages

such as JavaScript and PHP.

IBM AppScan Source Various Unknown Proprietary Output shown in a GUI,

UML-like, even shows

risk assessment matrix

for each vulnerability

based on severity and

likelihood.

Unable to test (Proprietary)

RIPS (Community

Edition)

PHP PHP GNU Runs on a PHP

webserver. Shows sink

trace.

VCG

(VisualCodeGrepper)

C#, C++,

Java, PHP

C# GNU List of potential issues

shown in GUI with

description.

Easy to use. No longer

maintained. Does not find

new issues including potential

crypto issues (eg: use of

MD5). Does have a high

accuracy rate of detecting

PHP XSS from initial testing.

Each tool works in a similar manner and results are presented with slight differences. The tools provide the

source code to read from, then analysis is performed, and the user is shown the results. Results are presented

with the line number, the type of vulnerability and sometimes the related CWE ID.

Some relevant tools detection capabilities are compared later in the “Evaluating against other tools” section.

H) STATIC ANALYSIS AS PART OF THE CODE REVIEW PROCESS

A static analyser needs to be used correctly to be effective in identifying security issues from software

development projects. A static analyser can be integrated into a code review cycle easily. The system can assist

Web-Based Static Source Code Analysis Shaun Webb

30

the reviewers and essentially acts as a third-party verifier of the code. The steps below highlight how the static

analyser can be integrated into a code review process.

1. Establish Goals

In the initial step a well-defined set of security goals should be devised. This will help prioritize the code that

will be reviewed and gain an understanding of the criteria used to review it. Assessing the most likely software

security risks the project faces will help when creating goals. The code reviewers need to be well educated and

trained on a range of security issues, such as those highlighted in the OWASP Top 10. High-level descriptions

can help ensure they have a good understanding of the purpose of the code.

2. Run the static analysis tool

The next step should be to run the project code against the static analyser tool, it is important to remain

attentive of the goals that were devised. If the tool allows for specific issues or warnings to be supressed it

should be done during this step. If certain security issues are becoming more common place it would be a

good idea to extend the code of the static analysis tool. Adding new rules will allow for detection of new

security issues and allow for current issues to adapt to any changes that may occur in the future. These

changes may come from updates to the browsers themselves, differences in how the latest ECMAScript

version works to understand new JavaScript syntax and more.

3. Review code using the results from the static analyser

The reviewers should go through the results presented by the analyser tool. Vigilance is required as false

positives are possible, and issues not shown by the tool may still exist. The tool is simply that, a tool to help

find issues that developers may have missed. It does not guarantee security, it simply acts as a safety net,

detecting issues developers may have overlooked. Reviewers also need to be aware of semantic and syntactic

bugs, not only security issues.

4. Make fixes

When the developers make fixes, it is important that security matters to them. The code changes need to be

implemented correctly. Developers should not get trapped into the mentality of quickly trying to fix bugs on a

checklist without due diligence, resulting in the same issue reoccurring because it wasn’t fixed correctly the

Web-Based Static Source Code Analysis Shaun Webb

31

first time. They need time to respond to the feedback from the code review, then plans to correct and secure

the code need to be devised and implemented.

III. DEVELOPMENT

A. DEVELOPMENT METHODOLOGY

This section explores different software development methodologies and how they can be employed.

Considerations must be done as this type of project brings great difficulty, due to the technological and time

limitations. There are only a limited number of similar tools that exist, and they can only solve a subset of the

problems. Vulnerability detection with source code obfuscation brings immense difficulty, even the best in the

world cannot do it perfectly (Schrittwieser & Katzenbeisser, 2011). Therefore, it is crucial to select a suitable

methodology to increase the chances that this development project is successful.

In later sections code that is used for demonstration purposes is presented as such

Example code

Whereas code used in development project directly is presented in a dark IDE theme.

1. SOFTWARE DEVELOPMENT LIFE CYCLE

The Software Development Life Cycle (SDLC) is a process used in the software industry to define each step of

the software development stages, from planning, implementing, testing and the maintenance of the project.

The SDLC phases seen in Figure 19 will be used to direct the development of this project, starting with the

requirements gathering and analysis phase.

Web-Based Static Source Code Analysis Shaun Webb

32

Figure 19. SDLC Phases

The waterfall model was the first process model to be introduced. Each phase must be completed before the

next phase can begin and no phase overlaps. Various methodologies have evolved since the first and oldest

waterfall model, including agile, spiral, and v-model methodologies (Existek, 2017).

The term agile was popularized by the famous Manifesto for Agile Software Development (Beck, et al., 2001).

The agile model understands that every project needs to be handled differently. An iterative approach is taken

that allows for software features to be delivered after each iteration. Each build is incremental in terms of

features and the final build will have a full set of complete features ready for the end product.

2. CHOSEN METHODOLOGY

An Agile approach was taken due to the limited time constraints of developing an application that is innovative

and pushes the boundaries of what is currently possible.

An agile approach breaks the product into small incremental builds, these builds would allow for new features

to be worked on. The initial main application will likely take time to setup but once the implementation stage

has been reached and once the main backend of the application has been created then it should allow for

features to be added in a modular fashion. The new features could target new vulnerabilities or provide

additional functionality for the application. This would allow for the features to be added in a realistic manner

based on the time constraints of the project. These time constraints will dictate the number of vulnerabilities

that can be targeted and would allow flexibility if a feature was to be dropped for another.

Web-Based Static Source Code Analysis Shaun Webb

33

B. REQUIREMENTS GATHERING AND ANALYSIS

Requirements gathering is typically the main phase that project managers and stakeholders focus on. It is

important to understand what is the problem that the system is trying to solve, who is going to use the system,

and what data will the system output.

Once the requirements have been gathered, they are then analysed to ensure they are valid and the possibility

of incorporating them into the system is considered. Finally, a requirements specification is formally created

that is used to guide the next phase.

1. FUNCTIONAL REQUIREME NTS

Functional requirements describe the features that are required in the software.

The requirements for this project are devised based on the need for improved web security with consideration

of the OWASP Top 10 critical issues while also briefly following the NIST 500-268 specification which outlines

the main areas that should be focused on when developing source code security analysis tools. The decision

was made to focus on static source code analysis over dynamic analysis, due to the prevalence of dynamic

tools, and the seemingly great areas of innovation that are available in static source code analysis despite the

challenges.

The static source code analysis tool should at a minimum do the following:

• The software must be able to accept as an input compatible source code.

• Identify software security vulnerabilities in source code listed in Table 4.

• Report the security weaknesses that are identified, describe what kind of weaknesses they are, and

finally determine the line number of the issue in the code.

• Identify weaknesses despite the presence of coding complexities listed in Table 5.

• Have an acceptably low false positive rate.

Optionally the tool should:

• Produce an easy to digest web-based report.

• Allow specific vulnerabilities to be suppressed by the user so they do not appear in the report.

• Attempt to find hash values original value using rainbow tables.

• Use the Common Weakness Enumeration (CWE) number beside the weakness it reports.

• Support obfuscated code analysis.

• Suggest a secure code alternative for the security issue found.

Web-Based Static Source Code Analysis Shaun Webb

34

Table 4. Source Code Weaknesses

Name CWE ID Description Language(s) Relevant Complexities

Input Validation

Basic XSS 80 Inadequately filters an

input which allows a

malicious script to be

executed and passed to

another client.

PHP,

JavaScript

Taint, scope, local control

flow, loop structure,

obfuscation

SQL Injection 89 Unfiltered input used

directly to perform an

SQL command.

PHP, SQL Taint, scope, local control

flow, loop structure,

obfuscation

Trust of insecure variables

External

Initialization of

Trusted Variables

454 In PHP HTTP_ variables

can possibly be modified

by the client and

modified variables could

be used for privilege

escalation or other

attacks.

PHP Taint, obfuscation

URL Redirection to

Untrusted Site

601 Redirecting users to a

URL that relies upon a

variable such as a HTTP

GET parameter puts

users at risk of being

directed to

malicious/phishing

websites.

PHP,

JavaScript

Taint, scope, local control

flow, obfuscation

Data exposure

Storing Passwords

in a Recoverable

Format

257 Passwords that are

stored in a recoverable

format, such as encoding

provide no benefit over

storing as plaintext.

PHP Scope, obfuscation

Web-Based Static Source Code Analysis Shaun Webb

35

Reversible One-

Way Hash

328 Hash functions that are

proven to be insecure,

through reversibility,

collisions and lack of

salting that makes

rainbow tables easy to

use.

PHP Scope, obfuscation

Use of Hard-coded

Cryptographic Key

321 Use of keys hard coded in

text, including API keys

for providers like AWS.

PHP,

JavaScript

Scope, obfuscation

Exposure of

Private

Information

359 Exposure of private

information such as

passwords and credit

card details

PHP Scope, obfuscation

Table 5. Source Code Complexities

Complexity Description Enumeration

Taint Attackers can taint user input

with malicious data.

HTTP GET/POST

parameters/body, URL Path,

Cookies

Local control flow The order in which code is

executed creates complexities.

Vulnerabilities may only appear

when one branch of code is

executed and not the other.

If, switch, goto, function calls,

loops, recursion, exceptions

Loop structure The type of loop construct where

the weakness is located.

Do, while, foreach, for

Scope The scope of the control flow

related to the weakness.

Local, global, in other

files/libraries

Obfuscation Code that has been deliberately

modified to make it difficult for

humans to understand. Used to

hide malicious code.

Various techniques

Web-Based Static Source Code Analysis Shaun Webb

36

Many of the OWASP Top 10 most critical web application security risks are chosen. Targeting the main issues

gives the system a higher chance of detecting security vulnerabilities as these can be some of the most

prevalent issues, the need for the system is also increased as these are the most critical issues right now. No

tool checks for all weaknesses in the CWE. Some of which are hard to define, like leftover debug code (CWE ID

489). Some of the issues vary considerably with each bringing different coding complexities providing unique

challenges.

The main issues covered are:

• Injection

• Broken Authentication

• Sensitive Data Exposure

• Broken Access Control

• Cross-Site Scripting (XSS)

Other issues targeted closely match others in the Top 10 list but were not deemed close enough to be

counted. The “Using Components with Known Vulnerabilities” issue should be different to “Using Commonly-

Known Vulnerable Protocols and Hashing Functions” such as MD5, although libraries which use an insecure

cryptographic algorithm may be categorised as a component with a known vulnerability such as collision

attacks.

Obfuscation code should be analysed. If the obfuscated code itself cannot be analysed or no issues were found

then the system should attempt to deobfuscate it and then retry the analysis.

2. NON-FUNCTIONAL REQUIREMENTS

Non-functional requirements describe how well certain functions should perform in the system.

The main non-functional requirements have been outlined below in Table 6.

Table 6. Non-functional requirements

Requirement Type Description

Usability The system should provide a simple to use UI and

easy to digest report of the security issues found.

Web-Based Static Source Code Analysis Shaun Webb

37

Compatibility PHP files that also have JavaScript in them should be

supported.

Accuracy The system should aim for a high level of accuracy

70%+, with few false positives.

Scalability The system should consider the need for scaling

using technologies like the cloud.

Performance (speed) Analysis of code should aim to be completed around

(lines of code / 10) in milliseconds. Each case may

vary considerably. But in general, the user should

not wait for long and feedback should be presented

on the screen.

Performance (size) The system should be able to analyse large files of

around 100k+ SLOC.

Maintainability Once the main backend for the system has been

made, it should allow new features to be added

easily in a modular fashion. Use of documentation

aids this process.

Completeness The system should be a proof of concept and does

not need the full feature set of a complete system,

especially given the time constraints.

Portability The system should work on a range of different

platforms from Windows to Linux.

Reliability The system should not fail, or at least report an

appropriate error message.

Security The system is designed to be ran only by the

developers as they are giving full access of the code

to the system. Should only be used in an

environment independent of other code bases.

Documentation Documentation should cover both how to use the

system and a basic overview of the code which aids

maintainability.

Web-Based Static Source Code Analysis Shaun Webb

38

C. DESIGN

The design phase of the SDLC creates a high-level design of what the software should accomplish in order to

meet the requirements. These designs can range from cost estimations such as COCOMO to MVC design

patterns and even architectural designs that describes how parts of the system will communicate.

1. COMPONENTS

Literature review research has shown that static source code analyser components should be comprised of:

1. Source Code Input

Source code should be in a target language with security vulnerabilities exposed so that it can be

passed to the next stage. It was shown in Figure 5 that PHP makes up around 79% of the worlds most

used server-side programming languages with many vulnerabilities reported. This also helps improve

the security knowledge required in the third component. This dictated the reason to use PHP over

other languages. JavaScript inside PHP should also be supported. A web-based UI can be used to

upload the source code into the program, this allows for greater flexibility when supporting multiple

operating systems. Additionally, GitHub repositories can be scraped and checked.

2. Program Model

The static analysis tool needs to be able to parse and transform the code into a program model. The

techniques used for this are very similar to compilers. Many static analysis techniques were

developed by researchers working on compiler technology (Aho, et al., 2006). Lexical and taint

analysis are the 2 most obvious components that should be used. Lexical analysis will make

understanding the code easier by tokenizing the source code, allowing for it to be more easily

understood. The Zend engine is the open source engine that is used internally to interpret the PHP

language. It is possible to use the engines tokenizer component to provide a list of parsed PHP tokens

(php.net, 2019). Taint analysis should be done on all of the possible “T_VARIABLE” tokens to

determine where its value came from.

If time allows then data flow analysis with control flow analysis could be implemented to better

determine and understand the flow and execution of the code. These will improve the accuracy of the

analyser but are not required to make the analyser work, as such they have a lower priority and they

can be decided upon later.

3. Perform analysis with security knowledge

The source code can be passed into the program and analysis can be performed. The security

knowledge can be built using known exploits. The online CWE MITRE database for PHP lists known

Web-Based Static Source Code Analysis Shaun Webb

39

exploits and even provides code examples. The main security issues chosen from the Top 10 OWASP

list can be found on CWE3.

These code examples can be used when developing and testing the application. To further improve

the accuracy of the results certain security issues can be confirmed. For example: AWS credentials

found in code can be used to try and connect using the AWS CLI. Hash values can be checked online

against rainbow tables to attempt to get the real input value.

4. Present results

The same web-based UI that was used to upload the source code should be used to present the

results. The UI should show the following about each security issue it finds:

• Line – The line number and preview of code on that line where the issues were found

• Type – The token type should be displayed which briefly shows what is vulnerable

• Value – The value should highlight a small part of the code to show what is vulnerable

• Description – An explanation of the issue that includes the type of vulnerability

• Severity – A rating that estimates how severe the vulnerability is. 1 is the lowest severity

rating and 5 means the highest. Values are determined by the CWE likelihood and impact.

• CWE ID – A CWE ID will help the developer learn more about the issue and better determine

how to fix it

• Suggestion – A suggestion will show alternate secure code that could be used instead, useful

to train developers.

2. ARCHITECTURE

Figure 20. System architecture design

• Client

o A. Application front-end

Web-based application is accessed by the client and source code selected by the user is

uploaded to the backend, or a GitHub repository URL is given and passed to the server.

3 https://cwe.mitre.org/data/definitions/1026.html

https://cwe.mitre.org/data/definitions/1026.html

Web-Based Static Source Code Analysis Shaun Webb

40

• Backend

o B. Application back-end

The backend of the web application is hosted in the cloud such as AWS EC2. Using a cloud

environment helps prove the viability of the application in the real-world. The backend then

communicates with GitHub if a URL was given or it will use the source code if uploaded

directly. The backend communicates with various online sources to aid the program analysis

and improve the accuracy of the vulnerability detection, using rainbow tables, etc. A report is

then sent back to the client and results are displayed in the web browser.

• External

o C. GitHub

GitHub is used to scrape repositories that the developer requested. Repository data is given

back to the backend and then passed to the client. The client chooses which file should be

analysed, then normal behaviour is resumed by the backend to perform analysis.

o D. Internet – Security Knowledge

Various sources online can be used to back up the program analysis and improve the

accuracy of the vulnerability detection.

Web-Based Static Source Code Analysis Shaun Webb

41

3. ACTIVITY DIAGRAM UML

• Open Web Application

The user loads the application.

• Select Source Code

The user chooses the file to be uploaded.

• Conditional

File is uploaded directly, or the GitHub repository

information is downloaded.

• Select File from Repository

A list of compatible files found in the repository are

listed, the user selects one.

• Program Analysis

The program performs analysis on the source code to find

vulnerabilities. In some cases, extra steps may be taken

to confirm with security knowledge bases online, this is

not shown on the activity diagram.

• Display Results

The user is presented with the results from the analysis.

4. UI DESIGN MOCK-UP

UI Design mock-ups allow for the user interface to be designed before-hand. Any required changes that are

detected at this stage are quick and easy to change.

The user of the system will go to the home screen (Fig 22) and select a file to be analysed by the system. A

compatible file (PHP) can be uploaded directly to the server or a GitHub repository URL can be given. If a URL is

given, then the repository data is scraped, and the user will be presented with a different screen (Fig 23). Once

Figure 21. Activity Diagram UML

Web-Based Static Source Code Analysis Shaun Webb

42

a file has been uploaded or selected from the GitHub repository the user is finally passed to the report results

screen (Fig 24).

Figure 22. Homepage UI mock-up

The user is shown a GitHub repository screen if they chose to give a URL instead of uploading a file directly.

The directories and relevant compatible files for the analyser will be shown, as the system is limited to only

PHP files then only files which file extension ends with “.php” will be displayed. If a directory is selected, then

the same screen is shown but updated with the relevant files for the selected directory. Once a PHP file is

selected this file is then passed to the analyser.

Web-Based Static Source Code Analysis Shaun Webb

43

Figure 23. GitHub Repository viewer UI mock-up

The final screen the user is presented with is the results page. The program analysis would have been

completed by now and the findings are shown back to the user. The page will display a table showing the

vulnerabilities found along with the main points of concern outlined previously. A button to download the

report should also be given. Finally, but not so importantly, previously analysed files should be listed and

clickable to switch between reports.

Web-Based Static Source Code Analysis Shaun Webb

44

Figure 24. Report screen UI mock-up

5. SUMMARY

In order to identify web-based security issues from the OWASP Top 10 list, an appropriate language was

chosen. From the literature review, PHP was found to be the most common server-side programming

language, so this is the best candidate.

A web-based system will also be created, that brings together components required for source code analysers

to work. These are tried and tested components that have been used in compilers for years. The system is

divided into; client-side, backend, and external, all of which make up the architecture of the application. An

activity diagram shows the flow of the system using the Unified Modeling Language (UML). Then finally, UI

mock-up designs are given for each screen of the system.

D. IMPLEMENTATION

This section outlines the implementation stage of the project in detail. Justifications are made for why tools,

technologies and platforms were chosen over others. The implementation is based on the designs previously

shown. The main functionalities of the system along with the results are analysed in detail.

Web-Based Static Source Code Analysis Shaun Webb

45

1. CHOICE OF LANGUAGES AND TOOLS

As the design decisions lead us to target PHP, it made sense for a web-based solution to be built.

The application was built using the following technologies:

• NodeJS

NodeJS is a server-side JavaScript framework that is built on the Chrome V8 run-time engine. NodeJS with the

Express framework was used as it allows for a lightweight server to be up and running easily with minimal code

and little overhead. JavaScript inside PHP code also needs to be analysed so this also contributed to the

decision to use NodeJS.

• PHP – Zend Engine

PHP is an obvious candidate to target PHP vulnerabilities as it can have dynamic run-time capabilities.

However, since the purpose of this project is to review the feasibility of static analysis, the programming

environment that the developer has more familiarity with was chosen as parsing large streams of code can

become very complicated. The Zend Engine is what PHP uses internally to interpret PHP code, some of the

internal functions for the interpreter were used to provide more details about the code such as the lexical

analysis tokenizer function (Bakken, et al., 2004).

• AWS EC2

A cloud environment allows for the tool to prove that it will work in an environment that is analogous to that

of the real world, this is important to further prove the feasibility of the project. Amazons Web Services is a

perfect playground to create virtual cloud environments and run scalable web-based applications. EC2 was

used to create an Ubuntu Linux Virtual Machine, acting as the backend for the application.

• HTML – Bootstrap Theme

The front-end system that the user interacts with is done via a web browser. Standard HTML with the

Bootstrap CSS theme was used, other libraries such as jQuery were used to simplify code over vanilla

JavaScript.

Web-Based Static Source Code Analysis Shaun Webb

46

2. SYSTEM FUNCTIONALITIES

This section outlines the main functionalities of each part of the program in detail with small snippets of code.

The system is designed for programmers to use as the results given are targeted towards them, but the system

is easy to use for a range of skill levels. The application is simplified by the fact that there aren’t many different

pages to navigate. The main complexity comes in the program analysis part that analyses the code and detects

vulnerabilities.

A) HOME SCREEN

The main home screen is simple and easy to use. The user is presented with two options when loading the

application. They can either upload a PHP file directly or choose a GitHub repository to be scanned.

Figure 25. Homescreen UI screenshot

Web-Based Static Source Code Analysis Shaun Webb

47

(1) UPLOADING A FILE

From the Home screen clicking “Choose File” will bring up a file picker dialog.

Figure 26. Upload file UI screenshot

Upon selecting a file and clicking the top submit button on the home screen the source code will be uploaded

to the back-end server. Only PHP files are supported as the application is designed to target only that

language, although it does support JavaScript that is inline in PHP.

B) GITHUB REPOSITORY SCREEN

If a GitHub repository URL is given, then a list of the directories and files will be shown.

Figure 27. GitHub repository viewer UI screenshot

Web-Based Static Source Code Analysis Shaun Webb

48

Upon clicking a PHP file, the system will start the analysis of that file and display the “results screen”.

C) GITHUB AUTOMATIC SCRAPING

Due to time constraints, this feature was not fully completed but the idea behind it is simple. The idea was to

use GitHub’s own search and topic feature to find and target specific repositories automatically. These could

be AWS based projects written predominantly in PHP for example. The tool would then scrape a large amount

of code from many repositories and perform analysis on them. It could be used to find exploits, credentials

and API keys in public repositories.

D) PROGRAM ANALYSIS

Once a compatible file is selected the system then performs program analysis. This stage occurs without the

user knowing as this is done on the back-end. Each problem set (Vulnerability detection, Cryptography

checking, Sensitive data and Taint analysis) of the analysis is done asynchronously allowing for fast

computation.

(1) NODEJS SPECIFIC DETAILS

The coding style chosen is tailored for NodeJS. Typically speaking NodeJS is a single-threaded application, that

supports concurrency via the event loop, this allows it to be asynchronous and non-blocking I/O. Simply put

this means that code is not always executed in the simple sequential way most programmers think. Callbacks

are initiated and data is returned when it is ready via a promise, this allows for other code to keep flowing

while computation is being done. See the small example below in Figure 28 and 29 for an explanation of this

concept.

Here the code loads a file, prints the file information to the screen then prints the message “hello”. However,

this style of programming is not good for NodeJS as it will block the event loop and prevent further execution

of any other code. Many NodeJS functions are asynchronous only. This would cause other ongoing executions

to hang and wait until previous computation has finished.

var fs = require("fs");

var data = fs.readFileSync('data.js','utf8');

console.log(data);

console.log("hello");

Figure 28. NodeJS sync code example

Web-Based Static Source Code Analysis Shaun Webb

49

This example uses the concept of a callback to load the file. It will load the file concurrently and not block the

event loop. This means that the program will print the message “hello” before it will print the file information.

However, this also means that the variable data cannot be used outside the scope of the readFile call until the

callback has returned.

var fs = require("fs");

fs.readFile('data.js','utf8',function(err,data){

 if(!err) {

 console.log(data);

 }

});

console.log("hello");

Figure 29. NodeJS async code example

This asynchronous programming method has been used to optimize the program analysis stage. The Async.js

utility was used to better manage the asynchronicity. The below example in Figure 30 is from the developed

applications and demonstrates the use of asynchronicity.

Figure 30. System async code snippet

Using the asynchronous method, the problem sets are executed independently, resulting in a much faster

program. In this case, the program will only be as slow as its slowest function rather than the cumulative

execution time of each function. Other functions which require more computation or scan online security

knowledge databases are done after the initial source code analysis via AJAX and is explained later in the

“Results Screen” section.

Web-Based Static Source Code Analysis Shaun Webb

50

Although NodeJS typically only utilizes a single thread it is possible to take advantage of multi-core CPU

systems. Using a cluster of NodeJS processes allow for the load to scale based on the total number of CPU

cores available on the server (nodejs.org, n.d.).

An AWS EC2 t2.micro instance is used, although this only has a single core the code is scalable and ready to

work with more powerful processors.

(2) PHP ZEND ENGINE – LEXICAL ANALYSIS

The module “exec-php” is used to provide direct access to PHP function calls directly from within NodeJS. The

PHP Zend Engine that is used to interpret PHP is written in C4 . The PHP language provides direct and easy

access to some of its functions. The function “token_get_all” is called directly from NodeJS using “exec-php”

with the entirety of the source code to analyse being passed as a parameter. The PHP will get executed and it

returns a series of tokens back to NodeJS.

The tokens will vary depending on the source code, but they will generally provide the level of detail as seen

below in Figure 31.

Line 1: T_OPEN_TAG ('<?php ')
Line 2: T_ECHO ('echo')
Line 2: T_WHITESPACE (' ')
Line 3: T_CLOSE_TAG ('?>')

Figure 31. System exec-php token example from a simple php file

The array of tokens are then used in the detailed analysis part which attempts to parse and understand the

code.

(3) DETAILED ANALYSIS

Once the source code has had gone through the lexical analyser the token data is used and multiple problem

sets are analysed in parallel. For each problem being targeted the full set of tokens are iterated through,

exposing the line, type and the code. In the sections below, each issue type is explained and some screenshots

are taken from the results screen to give better context to certain conditions.

4 GitHub PHP https://github.com/php/php-src/blob/master/ext/tokenizer/tokenizer.c

Web-Based Static Source Code Analysis Shaun Webb

51

(A) TAINT ANALYSIS

Taint analysis is a method of checking which variables can be modified by user input.

A list of known good and bad PHP predefined variables are stored. Each token iteration is cross referenced

with the bad predefined variable list and exclusions are made for the good predefined variables depending on

the situation or context. An example is the header HTTP_X_FORWARDED_FOR is secure if it is set properly

when behind a proxy but without a proxy, this header can be modified by the user and should not be trusted.

A very simple example of a tainted variable can be seen in Figure 32.

$data = $_POST['data'];

Figure 32. Taint vulnerable code example

This example is much simpler to analyse. However, the difficulty then is transferred to understanding what the

expected behaviour of the program is. Is it safe for the user to set the data variable, or should this value be set

via the backend? A userID for example should not be set by the client, but many developers mistakenly

implement it this way. For this reason, the decision to highlight the potential issue was chosen, this means the

code analysis will detect what it thinks could suffer from taint analysis but false positives will exist depending

on the intended behaviour of the program.

(B) XSS AND SQL INJECTIONS

The taint analysis feature is then expanded upon to check for both SQL Injection and XSS.

Here is a brief look at a simple XSS check. Once taint analysis proves that an input can be modified by a user,

we then need to verify that it could suffer from an XSS attack. A list of XSS protection functions are collated,

these are used to see if sanitization is being done on the input. Vulnerable code could be using one of the

functions to make it safe, so it is now no longer an issue. However, if the user is calling a function that we do

not have access to, and we do not recognize it as an in-built function then we have no way of detecting if the

function call will correctly sanitize the input. This is where using dynamic analysis to verify issues would have

come into play. Being able to combine static and dynamic would give the analyser improved accuracy, but this

was not experimented with for XSS, only with certain sensitive data that is explained in later sections.

Here the use of known sanitization functions calls are checked upon once the variable is determined to be

modifiable via user input.

• Check for a list of known XSS protection functions

Web-Based Static Source Code Analysis Shaun Webb

52

Figure 33. XSS Function protection list

• If this is true a known XSS protection function was used

Figure 34. XSS function protection check code snippet

• If false, the tainted variable could be vulnerable to XSS. Additional checks are done to determine if

any other sanitization is attempted before deciding if the code is vulnerable or not.

Figure 35. XSS vulnerability check code snippet

This line of source code (Fig 36) is susceptible to an XSS attack, however if customFunction does validate the

input correctly it will now be secure. In this example, the analyser does not have access to this function (lets

say it’s from a different library) so there is no definitive way of determining if the attack was negated using

static analysis alone.

echo "Hello " . customFunction($_POST['2']);

Figure 36. customFunction that may or may not sanitize input example

Figure 37. Report screen example of detecting non-deterministic function call

Figure 37 shows the issue being presented on the report screen with the line number and a basic description.

(C) CRYPTOGRAPHIC VERIFICATION

For cryptographic-based issues the system simply checks for hash values and encoded messages that are

hardcoded in the source code. For example, if the system finds that some text is encoded it will determine the

Web-Based Static Source Code Analysis Shaun Webb

53

encoding method such as base64, then decode the message. It is near impossible from the code alone to

determine the real context in which the encoded message is being used, it may be used to display a trivial

message, but it could also be used for something that requires high level of security. For this reason, the

system just informs the developer that it has found the encoded message and was able to decode it, the

developer then needs to take initiative to determine if it is ok to leave the encoded message intact.

A similar technique is used for known insecure hash algorithms with proven collisions. Although, this feature

has been expanded and is more advanced. For each hash value that is found in the source code the system

does some background tasks via AJAX, this ensures that the user experience and results screen is not slowed

down because of the tasks. The tasks involve search online databases of known hash values, essentially doing a

rainbow table search. These online databases already have huge collections of values and using these is more

viable than trying to build a table just for this system.

In this example (Fig 38) the hash value of “2fd4e1c67a2d28fced849ee1bb76e7391b93eb12” was found on line

14.

14. $text = "2fd4e1c67a2d28fced849ee1bb76e7391b93eb12";

Figure 38. Hash value inside the code to be analysed example

The system then found a match with the website hashtoolkit.com, although the user of the system will not

actually see the details shown in Figure 39, as this is done via the analysis tool on the backend. For some sites a

web scraping approach was implemented, for others a RESTful API is used.

Figure 39. Hash match with website

The user can then see that the original input value has been found along with the hash algorithms the system

thought it qualified for. An information icon can be hovered over for more information (Fig 41).

Figure 40. Report screen example finding hash match

Clicking this icon then takes you to the website or database where this information was found, just like as seen

in Figure 39 above.

Figure 41. Report screen example finding hash match with tooltip

https://hashtoolkit.com/

Web-Based Static Source Code Analysis Shaun Webb

54

(D) SENSITIVE DATA

The final type of check looks for sensitive data in source code. The simplest method looks for variables or text

with names similar to “password” or “credentials”, once found we can determine from the token data if the

code is a variable, comment or something else entirely. A regular expression is used to find credit card details

exposed in code, a similar method is used to find AWS keys (Fig 42).

Figure 42. Code snippet of AWS id and secret key regex

This feature has also been expanded to improve the accuracy of the report, demonstrating a simplified version

of the static meets dynamic analysis idea.

This paper proposes, and the project implements a simple verification mechanism, it uses the found

credentials and tests them with the API provider. Instead of presenting false positives to the user or developer

that is checking for leaked keys, confirming that the keys are valid is very beneficial for them. This verification

phase must be combined with one of the mentioned search methods and it is important to try and reduce the

total number of false positives first. A simple API call can be done with a user identification call. For Amazons

Web Services a simple “get-caller-identify” command can be performed via the command line or in a language

supported by the API.

The following AWS CLI command as seen in Figure 43 can also be used in code as seen in Figure 44.

AWS_ACCESS_KEY_ID=key AWS_SECRET_ACCESS_KEY=secret aws sts get-caller-identity

Figure 43. AWS CLI command

If successful, the following AWS response will be like shown (Fig 45).

{
 "UserId": "808624997024",
 "Account": "808624997024",
 "Arn": "arn:aws:iam::808624997024:root"
}

Figure 45. AWS reponse on valid match

Figure 44. AWS CLI command used in NodeJS

Web-Based Static Source Code Analysis Shaun Webb

55

This simple command can be used programmatically when a pair of keys (Client ID and Secret Key) have been

found. Instant verification on the validity of the keys provides perfect accuracy results. Certain restrictions for

different APIs need to be considered, such as IP restrictions set in place for credentials, under these

circumstances it would not show the credentials as being valid although they may be.

(E) DEOBFUSCATION

Deobfuscating code brings another layer of complexity. There are so many ways in which code could be

obfuscated. Simple weak cryptography methods such as rotating the character positions by a few, then

reverting when the code is used is a single method of obfuscation that could be used. There are many more

possible ways to obfuscate code making deobfuscation extremely difficult to be computed within a reasonable

amount of time. We could create an algorithm that attempt to try thousands of variations leaving us with

possible spurious code possibilities.

A few simple algorithms were devised to test this but as this is not the main focus of the application the

decision was made to use an existing tool and integrate it within the source code analyser. Upon initial

inspection the unphp.net tool seems fairly effective at finding many PHP obfuscation techniques but fails to

deobfuscate code that used the GOTO statement to move around the code. Perhaps due to the increased

complexity of flow analysis that would be required.

When a file is uploaded to the analysis program and no vulnerabilities were detected the user has an option to

try and deobfuscate the file.

Upon clicking the button, the source code is sent to unphp.net using their RESTful API. If the site was

successful in deobfuscating the code, then it returns original source code back to our analyser. The analyser

then puts this code into its program analysis to search for vulnerabilities. It also names the new file by

Web-Based Static Source Code Analysis Shaun Webb

56

appending _DEOBF at the end. Then the results are shown. Here we can see what the obfuscated code looked

like (Fig 46), then after deobfuscation (Fig 47).

eval(str_rot13(gzinflate(str_rot13(base64_decode('LUnHEq04Dv2arn6zI16gc1K+5Bw3Ru

QcWbiEr2KYGcpH2bIkW1RUgqUZrz/b8FjWeKyWP9NLLh/sP2CZRrD8Kca2Lq7 ...

Figure 46. Obfuscated code example (partial)

echo $_SERVER['HTTP_X_FORWARDED_FOR'];

echo $_SERVER['http_x_forwarded_for'];

Figure 47. Deobfuscated code example

After deobfuscating the original code, the issues were reported by the system (Fig 48).

Figure 48. Report screen detecting issues after deobfuscation

E) RESULTS SCREEN

The results screen is important to provide the user with an easy to understand report. Although the main

purpose of the static source code analyser is to identify security vulnerabilities, if the developer cannot

understand the security issues then they will be unable to fix the issue. Therefore, it is important for the

results to display all the information detected and be presented in a comprehensible manner for the user of

the system.

A PHP file with purposely made vulnerabilities has created and passed into the analyser. The report has been

created and shown below. The report has been split up into parts and is explained in the parts below.

Web-Based Static Source Code Analysis Shaun Webb

57

Figure 49. Report screen

At the top of the (Fig 49) screenshot is a progress bar that is doing background checks, this particular issue is

explained later. Located at the top right is a Download button which triggers the browsers native Save to PDF

functionality. The unsafe code with security vulnerabilities can be seen at the bottom of the screenshot, with a

full explanation of each issue. The “severity” can be clicked to open a link to the relevant OWASP page that can

suggest how this should be fixed. Further down the page are other security issues found with the PHP code.

They are separated by issue type (Crypto, Sensitive data). The small black information icons can be hovered

over and clicked for more information. For the hash values they show which rainbow table was used to find

the original input data.

Figure 50. Report screen more details

Web-Based Static Source Code Analysis Shaun Webb

58

Some calls use AJAX to get more detailed information after the initial results screen. These features include

checking hash values against online rainbow tables, using AWS Keys with the AWS CLI to verify they are valid.

The red highlighted fields are ones which are verified to be insecure. In this case the AWS keys were verified

using the AWS API, this means the keys actually work and could be used by other people who have access to

the source code.

Figure 51. Valid AWS keys found and verified

Figure 52. Report showing valid AWS key pair

E. TESTING

Software testing is used to verify that the system working in the way it is expected to. The application should

be tested to ensure the needs of the requirements are being addressed. During this phase different methods

of testing can be done to verify the functional and non-functional requirements, such as unit testing,

integration testing and UI automation testing. This can be time-consuming, labour-intensive and is prone to

human error (Ciortea, et al., 2009). Ideally, every aspect of the program would be tested, however this is not

feasible due to high cyclomatic complexities that make full test coverage difficult. These same difficulties are

shared by static analysers.

1. UNIT TESTS

Unit Tests have been combined with UI automation for full stack test coverage. They aim to ensure the system

meets the requirements. The unit tests are split up into 3 sections.

• Backend unit tests that test the server, checking status codes and server responses.

• Backend unit tests that call the analysis functions passing source code directly. Known vulnerabilities

for the code are known and checks are done to ensure the system detected them.

Web-Based Static Source Code Analysis Shaun Webb

59

• Frontend UI automation activated by the unit tests. These tests do not access the source code of the

system directly, but instead scrape data from the HTML and JavaScript shown in the browser. This

allows file uploads and vulnerability detection to be checked along with confirmation that the reports

are being displayed correctly.

Tests are executed manually by running the command “npm test” from the project directory. As the backend

of the system is made using NodeJS, it seems natural to use similar tools to create the tests. Mocha and Chai

are NodeJS modules that allow for asynchronous unit tests to be performed.

The tests mainly focus on the analyser function calls and the UI automation. Variable data and code behaviour

are asserted to ensure analysis is consistent and correct.

Code snippets from different unit tests can be seen below.

Figure 53. Simple status code response unit test

The unit test in Figure 54, checks that a correct CWE ID and name was detected from the analysis

Figure 54. CWE ID and name unit test

Web-Based Static Source Code Analysis Shaun Webb

60

The CWEs listed in the requirements are tested [80, 89, 257, 321, 454]. Then tests are done on source code

with known vulnerabilities and a small sample set from the NIST PHP SARD5 dataset. The coding complexities

listed in the requirements have been considered by the analyser. Some tests of the dataset source code

prompted an iterative approach to development and small changes to the program analyser were made to

reduce false negatives and fix a few simple display bugs such as escape characters being displayed incorrectly.

2. UI AUTOMATION

UI Automation takes advantage of the Selenium testing framework. Previous experience of the Python

Selenium framework were the reasons behind choosing the framework over other tools. The following free

tools were also considered;

• Telerik Test Studio

• Cucumber

For the project developer it was the first time using the NodeJS version of selenium, the choice of this was

dictated by ease of interoperability by using the same software stack (NodeJS). The asynchronous nature of

NodeJS causes some challenges with unit tests (Tayar, 2019). This meant that code had to be slightly different

to what was expected and await with async functions had to be used in order to overcome these issues.

Selenium was configured to use the chrome driver which uses Google Chrome. Headless mode was used as the

deployed AWS server has no GUI, and hardware acceleration was disabled as no GPU is present on the device.

Figure 55. UI automation code snippet

Selenium using the chrome driver can be seen below in Figure 56. Note the “Chrome is being controlled by

automated test software.” message at the top.

5 https://samate.nist.gov/SARD/

https://samate.nist.gov/SARD/

Web-Based Static Source Code Analysis Shaun Webb

61

Figure 56. Selenium controlling chrome

Figure 57. Unit tests passing

The unit tests serve better for SDLC purposes. They can ensure that code that is working correctly (currently

being flagged as vulnerable) and does not change when code changes later. This regression testing helps

ensure existing features don’t break.

See the video file attached to see a brief example of Selenium working.

F. EVALUATION

1. EVALUATING AGAINST THE REQUIREMENTS

Web-Based Static Source Code Analysis Shaun Webb

62

The evaluation phase looks over the SDLC and checks whether or not the systems meets the initial

requirements and objectives previously laid out. Strengths and weaknesses of the system are briefly

highlighted. Then finally briefly explain how the system can be deployed for end users of the system.

All of the main requirements were met except the “acceptable low false positive rate”. More time could be

spent on experimenting with techniques previously suggested such as combining static and dynamic analysis

together to lower the false positive rate. This was demonstrated when detecting AWS keys as a dynamic style

approach was taken once the static analyser determined issues.

Table 7. Evaluation of main functional requirements

Requirement Status

The software must be able to accept as an input

compatible source code.

Achieved. Files can be uploaded directly or scraped

from a GitHub repository.

Identify software security vulnerabilities in source

code listed in Table 4.

Achieved.

Report the security weaknesses that are identified,

describe what kind of weaknesses they are, and

finally determine the line number of the issue in the

code.

Achieved.

Identify weaknesses despite the presence of coding

complexities listed in Table 5.

Achieved.

Have an acceptably low false positive rate. Debatable. The “Evaluating against other tools”

section below proved that the false positive rate of

the developed application is higher than other

comparable tools, but the overall precision and

sensitivity performs better than most of the existing

tools.

From the optional requirements, suggesting secure code alternatives and suppression of specific issues was

not met. Supporting obfuscated code was partially met. All other requirements were met. Allowing for secure

code suggestions requires substantial work, as it not only needs to correctly identify the issue but also have a

deep understanding of how it can be fixed in order to suggest an appropriate code alternative.

Web-Based Static Source Code Analysis Shaun Webb

63

Table 8. Evaluation of optional functional requirements

Requirement Status

Produce an easy to digest web-based report. Achieved.

Allow specific vulnerabilities to be suppressed by the

user so they do not appear in the report.

Not achieved due to time constraints. This could be

done by the user selecting specific vulnerabilities

(CWE ID), then have the backend simply do not

perform those types of checks.

Attempt to find hash values original input using

rainbow tables.

Achieved. External security knowledge online is

used to check for possible matches.

Use the Common Weakness Enumeration (CWE)

number beside the weakness it reports.

Achieved. Next to each identified vulnerability the

related CWE ID and link to OWASP is provided.

Support obfuscated code analysis. Deobfuscation was only achieved via the use of an

API instead of developing a custom-built solution.

Due to time constraints, attempting to determine if

the obfuscation changes introduced new security

issues was not achieved.

Suggest a secure code alternative for the security

issue found

Not achieved. This would take considerably more

time to develop and requires a deeper

understanding of each vulnerability.

Each of the functional requirements achieved above have been explained in detail throughout the

implementation stages with screenshots and example data given.

The non-functional requirements are evaluated below in the table and an in-depth performance (speed)

analysis has been conducted.

Table 9. Evaluation of non-functional requirements

Requirement Status

Usability The system provides a simple to use UI and easy to

digest web-based report of the security issues

found.

Compatibility PHP files that also have JavaScript in them are

supported.

Accuracy Achieved. See Table 11 for details.

Web-Based Static Source Code Analysis Shaun Webb

64

Scalability The system has been deployed on cloud

technologies.

Performance (speed) Achieved. See Table 11 and Figure 58 for details.

Performance (size) Achieved. The system can analyse large files.

Maintainability Achieved. Version control and code documentation

are used.

Completeness Achieved. Provides an application in the form of a

proof of concept that works.

Portability Achieved. Windows and Linux supported.

Reliability Achieved. Error messages are used when exceptions

are thrown.

Security Achieved. Each instant will be deployed on an

isolated environment preventing unauthorized user

access.

Documentation Achieved. JSDoc was used for automation code

generation. See section “maintenance”.

The system performance (speed) was evaluated against 13 random files from different Git repositories.

Although the system will likely perform better on certain code than others, such as function heavy code. It is

important to evaluate against a wide variety of styles. Each test case is a single file with increasing levels of

source lines of code (SLOC) and the average time of 5 runs is taken. A threshold performance value of SLOC/10

was chosen, it is important to note that this value is subjective and could be different.

Table 10. System performance evaluation

Test

Case

SLOC Threshold time

to analyse (ms)

Avg time to

analyse (ms)

1 362 36.2 38.8

2 394 39.4 39.4

3 395 39.5 38.8

4 611 61.1 45.8

5 827 82.7 52.2

6 851 85.1 43.0

Web-Based Static Source Code Analysis Shaun Webb

65

7 931 93.1 53.8

8 1,282 128.2 60.3

9 1,551 155.1 64.5

10 2,391 239.1 76.2

Large 1 50,000 5,000 1304.4

Large 2 100,000 10,000 3032.2

Large 3 150,000 15,000 Out of memory

Figure 58. System efficiency analysis

Noteworthy mentions: Interestingly file 6 took less time than some other smaller files, this was due to large

comments blocks in the code that the parser ignored. This resulted in around 600 lines of code that was being

analysed instead of 851. A file of only 3 simple lines of took an average of 20ms to analyse. Each test case will

have at least this much overhead. Files of around 150,000 lines of code resulted in an out of memory

exception, this could be resolved by changing the code to offload its data into a database or a static file instead

of holding everything in memory in a single run, or even running on more powerful hardware.

The speed requirement was that the system should not take more than (SLOC / 10) in milliseconds to perform

analysis. In almost all cases where the SLOC was greater than 400 this was achieved. The greater the SLOC the

performance per line of source code actually increases. For smaller files the 20ms overhead made it not

 -

 500

 1,000

 1,500

 2,000

 2,500

 3,000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 2 3 4 5 6 7 8 9 10

SL
O

C

Ti
m

e
p

er
 li

n
e

(m
s)

Test Case

System Efficiency Analysis

Source lines of code (SLOC) Threshold Actual

Web-Based Static Source Code Analysis Shaun Webb

66

achieve its target. In a real-world scenario most developers will be satisfied with analysis that takes less than a

second.

Overcoming the coding complexities while correctly identifying security issues required significant

development research in order to overcome. Difficulties included correctly establishing an architecture that

uses components from compilers such as the lexical analyser. The tokenized code had to then be parsed and

performing regular expressions on code also proved to be difficult. Correctly identifying the exact security

issue also caused issues as sometimes an issue was caused by another. No current web-based PHP static

analyser worked with obfuscated code and some shortcuts had to be taken in order for the system to work

with it. The use of existing APIs saved a lot of time and proved to work quite well. This showed that it is

feasible to deobfuscate code and identify vulnerabilities.

Once the parsing and program detection was established. It was simple to produce a web-based report by

simply sending the information back to the frontend. Based on the type of detection that was successful the

CWE ID can be understood, so this was presented next to the issue description on the report.

The main purpose of the system is to demonstrate the usefulness of static source analysers and show that

there is a need for them to be adopted into software projects. One example of how the tool can be integrated

into a software development project is by introducing it into the code review process.

2. EVALUATING AGAINST OTHER TOOLS

Three tools that were briefly examined previously are evaluated against the developed system. The

effectiveness of each tool’s detection capabilities are compared.

Precision, sensitivity (also known as recall) along with Fβ scores are used to measure the tools detection

accuracy. These metrics are all used in statistical analysis to measure the performance of binary classification.

The scores are typically graded from 0 to 1, with 1 being perfect. Both precision and sensitive reward true

positives but the difference is that precision aims at reducing false positives, while sensitivity aims at reducing

false negatives. The Fβ scores calculate a weighted average of precision and sensitivity, and its formula is

shown below. The β value represents the weight on sensitivity, i.e. the larger the β value, the more emphasis is

placed on sensitivity over precision, and vice versa. F1 score is normally known as giving equal precedence to

both precision and sensitivity. F0.5 targets precision more than sensitivity, i.e. penalises false positives more. F2

targets sensitivity and penalises false negatives more, and this could be a useful metric for safety critical

systems.

Web-Based Static Source Code Analysis Shaun Webb

67

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝛽 𝑆𝑐𝑜𝑟𝑒 =
(1 + 𝛽2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

Five test cases were used, each of which includes a range of vulnerabilities inside, totalling 51 issues in total.

Only vulnerabilities that the developed analyser can detect are used CWE ID [80, 89, 257, 321, 454]. The test

cases are included with the uploaded files inside the test case directory. The test cases were taken from NIST

SARD (Software Assurance Reference Dataset)6 , OWASP and a past university assignment7.

Table 11. Evaluation against other tools

 Me VCG RIPS ProgPilot

Precision 84% 94% 82% 88%

Sensitivity 75% 33% 53% 41%

F1 score 79% 49% 64% 56%

F0.5 score 82% 69% 74% 71%

F2 score 76% 38% 57% 46%

The results are biased towards the selected CWE issues as other tools can detect many different issues as

opposed to a select few. But for the purposes of analysing the developed system which can only detect a few,

this had to be done.

True negatives are not measured in the evaluation as they are difficult to quantify from source code. Rather

than making every secure line a true negative, they were not evaluated. Also, zero-day attacks or missing

security knowledge would have been limiting factors when highlighting all true negatives.

None of the tools tested detected commented out insecure code. This is hard to determine if it is correct

behaviour. One could argue that developers may reuse that code in the future, so the static analyser should

6 https://samate.nist.gov/SARD/testsuite.php

7 Secure Systems and Applications (COMM047) - Assignment 1

https://samate.nist.gov/SARD/testsuite.php

Web-Based Static Source Code Analysis Shaun Webb

68

provide a warning that commented out code is insecure. For the test it was decided these issues are true

negatives, so they were ignored.

Some issues with the analysis include the difficult to categorize certain issues. Are the developers certain the

issue really is a false positive in all cases? Do they know that this issue is a true negative for all supported

platforms? There are some things that just have to be verified to the best of our ability.

A range of data sample sets were used for evaluating but larger test cases would have provided more accurate

results. Currently GitHub repositories have to be entered manually into the system to scrape and scan the

code. Changing this to automatically scrape thousands of relevant code repositories could have allowed for

greater range of testing, covering a wider range of coding styles and techniques.

Although, using the tests alone, it is difficult to measure how effective the analyser is. There are many reasons

for this; firstly the person implementing the test must know all of the vulnerabilities in the source code in

order to create the tests, secondly due to the difference in how analysers work, they detect issues with slightly

different results making it hard to compare directly. An example of this is using when using one tool, it detects

a vulnerability on line 4, another detects the same vulnerability on line 5, because it’s not actually been used

until then.

Other problems are related to function calls from libraries or codes bases that the analyser doesn’t have access

to. For example, take a function from a different file, if “customFunction” sanitizes data input, then there is no

security issue, if it doesn’t then it’s insecure. In these circumstances for the analysis the unknown function was

treated as insecure, so if the tool detected one, a potentially security issue was reported. Known native

sanitization functions such as “htmlspecialchars” were also checked but listed on a trusted function list to verify

that checks were being done.

Additional metrics considered but were not investigated include the ease of integration into an existing project.

Peter O’Hearn (2018) argues that the most important metric to measure the usefulness of a static analyser is

the “Fix rate”. This is where the issues are actually fixed after being reported, showing a good level of detection

capabilities and importantly practical use within a project. This qualitative method is hard to measure but an

organisation or future research could look at how the identified issues are reported back to the developers.

Other determining factors include if the tool is runs automatically or manually on a periodic basis.

The analysis was conducted on non-obfuscated code only. The system developed for this project was the only

one that could detect any issues when code was obfuscated using a tool such as PHP Obfuscator Tools8. This

shows severe weaknesses in existing analyser tools. It is common for code to be obfuscated to protect

intellectual property. Vulnerabilities in obfuscated code will not be detected, leaving code bases and ultimately

organisations at risk.

8 tools4nerds.com/online-tools/php-obfuscator

Web-Based Static Source Code Analysis Shaun Webb

69

It is obvious that more testing is required to fairly compare tools. Further analysis on how each tool detects

certain issues better than other tools could also be useful for organisations. The developed system has a high

detection rate, but also has the highest false positives rate. However, the high detection rate helped to

improve the overall metric scores. Due to time constraints, significantly less time was spent on reducing false

positives. Visual Code Grepper had the lowest overall sensitivity score but had the highest precision. Additional

testing is required so it is difficult to conclude useful information such as if the systems with higher false

positive rate also has a higher rate of true positives. Systems with high false positive rates are difficult for

developers to use as they waste lots of time.

Future work should look at techniques to reduce false positives. These techniques include combining dynamic

analysis to verify issues found by static analysis. By doing this an attack can be performed against the

vulnerability automatically and if successful the vulnerability can be confirmed as a true positive. Although, the

application would obviously require additional work to be able to strongly determine that a detected issue is

actually a false positive.

3. DEPLOYMENT

The system was built using web-based technologies and thus requires a web server with NodeJS version 8 or

greater. PHP 7.2.19 or higher is required as the Zend Engine is used for lexical analysis.

Windows and Linux are both supported. Deployment was done on both a local windows machine and an AWS

Ubuntu 18.04 t2.micro virtual machine. The deployment procedure has been simplified. NodeJS requires that

its dependencies in the node_modules directory are based on the package.json file. Then instantiation of the

server can simply be done by pointing node to the entry point of the system (index.js).

Figure 59. NodeJS deployed on AWS

It was important to not limit the application to a specific operating system or environment allowing for a

greater potential adoption rate, plus based on the fact that PHP is used on a variety of servers. Once deployed,

the environment was stable and worked throughout development with no major environmental issues.

Web-Based Static Source Code Analysis Shaun Webb

70

G. MAINTENANCE

The application can be expanded, and new features can be added in an ad hoc fashion. To support

development of new features it is important that the project uses version control, has good code

documentation along with comprehensive comments in code.

GitHub was used for version control throughout, providing cloud-based backups and management of code.

SourceTree by Atlassian has GitHub integration and greatly improves the usability of Git repositories. A simple

but effective GUI allows code changes to be easily tracked. The software shows additions and removals of all

code commits, this feature is extremely useful to spot mistakes in code changes. Using a single repository

simplified tracking of code changes across all layers of the system.

JSDoc9 was used for the generation of code documentation. Code is tagged to give information on the

parameters and return values. Code is also commented throughout, and an example of the documentation

generated can be seen in figure 60 below. This allows other developers to understand how the existing

features and functions work, this is crucial when extending the tool with new functionality.

Figure 60. JSDoc

9 JSDoc URL- jsdoc.app

Web-Based Static Source Code Analysis Shaun Webb

71

H. SUMMARY

This section summarizes the entire software development life cycle.

An agile development methodology was chosen to allow for features to be implemented in an iterative

fashion.

Functional and non-functional requirements were established initially. Then the design stage laid out the

foundations for the components of the analyser. Architecture and UI designs were mocked up and an activity

diagram in UML showed the standard behaviour the program should follow. PHP was targeted due to its

prevalence in the online world.

The implementation stage justified the language and tools choice used to develop the system. Then system

functionalities were explained in detail.

Testing included; unit tests that were conducted with Mocha and Chai. UI automation tested the frontend in

Chrome using the Selenium web driver.

Evaluation showed that how the system faired against the requirements and performance. The system showed

that it could keep up with, and even beat the current best web-based static analyser tools in terms of

detecting vulnerabilities and analysing obfuscated code through deobfuscation. Focusing on a small subset of

the most critical vulnerabilities, allowed the system to have a high level of vulnerability detection accuracy.

More work needs to be done on reducing false positives, however the high accuracy rate of detecting true

positives meant the precision and sensitivity scores for the system were still high. Brief deployment

requirements were also highlighted. The evaluation looked at how effective the system was.

Finally, code documentation was shown and explained how this aids the maintenance of the project.

A static source code analyser was developed that targets PHP and web-based vulnerabilities. Through testing

and evaluation, it proved to be useful and even better at detecting vulnerabilities than existing tools but could

be improved by reducing false positives. Suggestions were made on how it can be integrated into software

development projects.

IV. CONCLUSION

With the ever-growing threat of cybercrime there is a need for improving the security of software. Training

developers to be aware of all security concerns is challenging and hiring specialised security teams may not be

feasible for small organisations. The ubiquitous nature of web-based applications makes it a target for cyber

criminals who exploit vulnerabilities in software. Static source code analysers are an underutilized tool that can

be critical when identifying and removing such vulnerabilities. These tools are not perfect and due to the

difficulties developing them, and false positives are still quite high. It has been proven to be theoretically

Web-Based Static Source Code Analysis Shaun Webb

72

impossible to be free of false positives and false negatives in every case. However, the focus of static analysers

is to highlight potential security issues or bugs in code. The fact that they are imperfect does not prevent them

from having value.

The industry needs to adapt to better utilize such tools in the software development life cycle. This project has

shown that static analysers have the ability to successfully identify and reduce web-based security issues.

Challenges continue to exist in areas related to obfuscated code and ease of automated integration with

existing software projects. Techniques and ideas of using dynamic analysis to verify identified issues has been

explored. Low level components used in compilers such as lexical analysers make it possible to understand

source code and detect vulnerabilities. The developed application has shown that the detection accuracy of

current static analysers can be improved, weaknesses have been identified when obfuscated code is analysed,

current reporting systems can be modernised to keep up with the fast-evolving industry and secure code

suggestions instead of just a description would help to train developers on how to write secure code.

A. FUTURE WORK

We wouldn’t be where we are today without standing on the shoulders of giants. Static analysis covers

research going all the way back to Alan Turing through to Peter O'Hearn who is currently in charge of static

analysis at Facebook. That being said, there’s still large room for improvements in this area. The following

section proposes ideas for future research and additional development work to be conducted on the

application.

1. BROADER SCOPE

The first and more obvious direction for future work would be to expand the domain from web-based to

analyse desktop, server, mobile and IoT source code. The ubiquitous nature of computers has meant that we

rely on technology for everyday tasks, ranging from banking, communication, and even managing the

temperature of our homes via smart thermostat devices and much more. It is critical that these devices are

secure from cyber criminals and program analysis can help in that area. More research can be done to ensure

static analysers are performing the best they can in each domain. Moreover, the analysers need to be easier to

integrate into software development projects.

2. DEVELOPMENT WORK

The developed application can be expanded to allow for better usability, improved detection capabilities and

support for older versions of PHP.

Web-Based Static Source Code Analysis Shaun Webb

73

A) CONFIGURATION

The next step in expanding the developed static analyser is to allow it to be configured. This will help

developers use the tool in a variety of different projects that span over a range of platforms and architectures.

Allowing configuration of the tool will allow for it to be easier to adapt to different situations. Certain issue

types should be suppressible before and after analysis. Reported issues should allow the user to mark an issue

as a false positive. Other variations in system and platform usage should be covered, such as the support of

past versions of PHP and even expansion into supporting other programming languages.

B) CODE SUGGESTIONS AND DESCRIPTIONS

Instead of just reporting back that a security issue has been found. The analyser could suggest a secure code

alternative alongside a short description of the issue. This feature is similar to the features commonly seen in

modern compilers and IDEs that detect syntactic errors. This would allow for developers to receive direct and

immediate training about the code they write.

3. STATIC ANALYSIS AS PART OF THE BUILD PROCESS

It is important that the tool can be integrated into existing projects. When developers haven’t looked at even

their own code in over a year, they need to spend some time to get familiar with the code again. This process

is called context switching. To solve this problem, this paper proposes future research on instant static analysis

that is performed on source control code commits. The code can be committed by a developer, and a

centralized server can inspect the repository and run the tool on the code change at that moment. If an issue is

detected it will automatically raise an issue and proceed to show a detailed report related to that code change

directly in the commit’s issue description page. Integration should also be flexible so it should work with a

range of version control software and tools such as Jenkins so that it can perform checks on nightly builds. This

is important as organizations need a tool that not only works but is easy to integrate into their existing project.

4. ADVANCED DETECTION AND VERIFICATION

A proposal is made to combine dynamic analysis with static analysis. Issues detected by the static analyser can

be tested and verified in a sandbox environment that emulates the program in a dynamic manner. Using

counterexample guided abstraction refinement (CEGAR) the system can test if the issues are genuine or the

result of an incomplete abstraction. The dynamic system will then report back to the static analyser based on

its findings, and these steps can be repeated. This allows for false positives to be reduced dramatically, as long

as the dynamic sandboxed environment is comparable enough to the real thing.

Web-Based Static Source Code Analysis Shaun Webb

74

Both the static and dynamic part of the analysers can work together to maximize code coverage using concolic

testing. This allows the source code to be understood and symbolic execution can be performed in conjunction

with dynamic execution of the program. This overcomes the code coverage limitation of dynamic analysis.

An abductive inference-based algorithm can be used to meaningfully interact with users by generating small

and relevant queries that capture exactly the information the analysis is missing to validate or refute the

existence of an error in the program. This method tries to seek the simplest and most likely explanation for the

observed issue.

Although Edsger Dijkstra, famously once said “program testing can be used to show the presence of bugs, but

never to show their absence!” (Dijkstra, 1970). Some modern techniques attempt to prove this wrong (The

MathWorks, Inc., n.d.). Further research needs to be done on abstract interpretation and how it can be used to

detect or prove the absence of web-based security issues through sound approximation. This would also allow

for true negatives to be provided and perform better analysis on the tool’s effectiveness.

These suggestions will use novel techniques to improve vulnerability detection coverage and accuracy,

software projects will also benefit from improved integration and interoperability.

V. GLOSSARY

AJAX - Asynchronous JavaScript and XML

API - Application Programming Interface

AWS - Amazon Web Services

CLI - Command Line Interface

COCOMO - Constructive Cost Model

CPU - Central Processing Unit

CWE - Common Weakness Enumeration

EC2 - Elastic Compute Cloud

GDPR - General Data Protection Regulation

GUI - Graphical User Interface

HTTP - Hypertext Transfer Protocol

IDE - Integrated Development Environment

MD - Message Digest

MVC - Model–View–Controller

Web-Based Static Source Code Analysis Shaun Webb

75

NIST - National Institute of Standards and Technology

OGNL - Object-Graph Navigation Language

OS - Operating System

OWASP - Open Web Application Security Project

REST - Representational State Transfer

RSA - Rivest–Shamir–Adleman

SARD - Software Assurance Reference Dataset

SDK - Software Development Kit

SDLC - Software Development Life Cycle

SHA - Secure Hash Algorithm

SLOC - Source Lines of Code

SQL - Structured Query Language

SSH - Secure Shell

UI - User Interface

URL - Uniform Resource Locator

XML - Extensible Markup Language

XSS - Cross-Site Scripting

XXE - XML External Entity

VI. REFERENCES

Aho, A. V., Lam, M. S., Sethi, R. & Ullman, J. D., 2006. Compilers: Principles, Techniques, and Tools. 2nd ed.

Essex: Pearson.

AV-TEST, 2019. Malware Statistics & Trends Report. [Online]

Available at: https://www.av-test.org/en/statistics/malware/

[Accessed 4 August 2019].

Bakken, S. S. et al., 2004. Tokenizer functions. [Online]

Available at: https://www.macs.hw.ac.uk/~hwloidl/docs/PHP/ref.tokenizer.html

[Accessed 8 August 2019].

Barbosa, E., 2009. Taint Analysis. São Paulo, s.n.

Beck, K. et al., 2001. Manifesto for Agile Software Development. [Online]

Available at: http://agilemanifesto.org/

[Accessed 8 August 2019].

Chess, B. & West, J., 2007. Secure Programming with Static Analysis. s.l.:Addison-Wesley Professional.

Web-Based Static Source Code Analysis Shaun Webb

76

Ciortea, L. et al., 2009. Cloud9: A Software Testing Service, s.l.: s.n.

Cloudflare, 2019. What Is OWASP? What Are The OWASP Top 10?. [Online]

Available at: https://www.cloudflare.com/learning/security/threats/owasp-top-10/

[Accessed 9 July 2019].

Cybersecurity Ventures, 2018. Application Security Report 2017. [Online]

Available at: https://cybersecurityventures.com/application-security-report-2017/

[Accessed 4 August 2019].

Department for Digital, Culture, Media and Sport, 2019. Cyber Security Breaches Survey 2019: Statistical

Release, s.l.: s.n.

Dijkstra, E. W., 1970. Notes On Structured Programming, s.l.: Techn. Hogeschool.

Existek, 2017. SDLC Models Explained: Agile, Waterfall, V-Shaped, Iterative, Spiral. [Online]

Available at: https://existek.com/blog/sdlc-models/

[Accessed 7 August 2019].

Ghahrai, A., 2018. Static Analysis vs Dynamic Analysis in Software Testing. [Online]

Available at: https://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing/

[Accessed 5 July 2019].

GitHub, 2019. Code Search · GitHub. [Online]

Available at: https://github.com/search

[Accessed 7 July 2019].

Gleirscher, M., Golubitskiy, D., Irlbeck, M. & Wagner, S., 2014. Introduction of Static Quality Analysis in Small

and Medium-Sized Software Enterprises: Experiences from Technology Transfer. Software Quality Journal,

22(3), pp. 499-542.

Goldstein, A., 2019. Is One Programming Language More Secure Than The Rest?. [Online]

Available at: https://resources.whitesourcesoftware.com/blog-whitesource/is-one-language-more-secure

[Accessed 7 August 2019].

Gousios, G., 2013. The GHTorent Dataset and Tool Suite. Proceedings of the 10th Working Conference on

Mining Software Repositories, pp. 233-236.

Hex-Rays SA, 2015. IDA: About. [Online]

Available at: https://www.hex-rays.com/products/ida/

[Accessed 21 July 2019].

Jones, N., 1997. Computability and Complexity: From a Programming Perspective. Massachusetts, USA: MIT

Press.

Kumar, R. & Garg, . K., 1994. Modeling and Control of Logical Discrete Event Systems. New York, US: Springer.

Lent, J., 2014. Experts flunk out on secure coding practices. [Online]

Available at: https://searchsoftwarequality.techtarget.com/opinion/Experts-flunk-out-on-secure-coding-

practices

[Accessed 9 August 2019].

Mitchell, R., 2015. Web Scraping with Python. 1st ed. Sebastopol, CA: O’Reilly Media, Inc..

Web-Based Static Source Code Analysis Shaun Webb

77

Modern CISO, 2018. Securing Industrial Control Systems: A Holistic Defense-In-Depth Approach. [Online]

Available at: https://modernciso.com/2018/05/15/securing-industrial-control-systems-a-holistic-defense-in-

depth-approach/

[Accessed 5 August 2019].

Møller, A. & Schwartzbach, M. I., 2018. Static Program Analysis Part 1 – the TIP language. [Online]

Available at: https://cs.au.dk/~amoeller/spa/1%20-%20TIP.pdf

[Accessed 21 July 2019].

Moser, A., Kruegel, C. & Kirda, E., 2007. Limits of Static Analysis for Malware Detection. Twenty-Third Annual

Computer Security Applications Conference (ACSAC 2007), pp. 421-430.

National Health Executive, 2018. WannaCry cyber-attack cost the NHS £92m after 19,000 appointments were

cancelled. [Online]

Available at: http://www.nationalhealthexecutive.com/Health-Care-News/wannacry-cyber-attack-cost-the-

nhs-92m-after-19000-appointments-were-cancelled

[Accessed 4 August 2019].

nodejs.org, n.d. Cluster | Node.js v12.8.0 Documentation. [Online]

Available at: https://nodejs.org/api/cluster.html

[Accessed 8 August 2019].

O’Hearn, P., 2018. Continuous reasoning: Scaling up the impact of formal. 33rd Annual ACM/IEEE Symposium

on Logic in Computer Science, p. 13.

OWASP, 2017. OWASP Top 10 - 2017. [Online]

Available at: https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

[Accessed 8 August 2019].

OWASP, 2019. Static Code Analysis - OWASP. [Online]

Available at: https://www.owasp.org/index.php/Static_Code_Analysis

[Accessed 7 July 2019].

php.net, 2019. PHP: List of Parser Tokens - Manual. [Online]

Available at: https://www.php.net/manual/en/tokens.php

[Accessed 8 August 2019].

php.net, 2019. PHP: token_get_all - Manual. [Online]

Available at: https://www.php.net/manual/en/function.token-get-all.php

[Accessed 7 July 2019].

Rao, M., 2019. Are Static Application Security Testing (SAST) Tools Glorified Grep?, s.l.: Synopsys.

Schrittwieser, S. & Katzenbeisser, S., 2011. Code Obfuscation against Static and Dynamic Reverse Engineering.

Information Hiding, pp. 270-284.

Scrapy, 2018. Downloader Middleware - Scrapy 1.7.3 documentation. [Online]

Available at: http://doc.scrapy.org/en/latest/topics/downloader-middleware.html

[Accessed 7 August 2019].

Sikorski, M. & Honig, A., 2012. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious

Software. s.l.:No Starch Press.

Web-Based Static Source Code Analysis Shaun Webb

78

Singh, J. & Singh, J., 2018. Challenges of Malware Analysis: Obfuscation Techniques. International Journal of

Information Security Science, 7(3), pp. 100-110.

Sinha, V. S. et al., 2015. Detecting and Mitigating Secret-Key Leaks in Source Code Repositories. Proceedings of

the 12th Working Conference on Mining Software Repositories, pp. 396-400.

Sipser, M., 2012. Introduction to the Theory of Computation. 3rd ed. s.l.:Course Technology.

Tayar, G., 2019. JavaScript Asynchrony and async/await in Selenium WebDriver Tests. [Online]

Available at: https://applitools.com/blog/javascript-asynchrony-and-asyncawait-in-selenium

[Accessed 8 August 2019].

The MathWorks, Inc., n.d. Proving Absence of Run-Time Errors in Software. [Online]

Available at: https://uk.mathworks.com/company/events/webinars/upcoming/proving-absence-of-run-time-

errors-in-software-2590142.html

[Accessed 28 July 2019].

The MITRE Corporation, 2015. Disrupting the Attack Surface: Making Life Hard for the Adversary, s.l.: s.n.

Thor, W.-M., 2018. 5 top programming languages to learn server-side web development. [Online]

Available at: https://twm.me/best-programming-languages-and-frameworks-for-server-side-web-

development/

[Accessed 7 August 2019].

Truher, J., 2019. Invoke-WebRequest. [Online]

Available at: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-

webrequest?view=powershell-6

[Accessed 7 August 2019].

Turing, A. M., 1937. On computable numbers, with an application to the Entscheidungsproblem. Proceedings

of the London Mathematical Society, 42(2), pp. 230-265.

Viennot, N., Garcia, E. & Nieh, J., 2014. A Measurement Study of Google Play. Proceedings of the ACM

International Conference on Measurement and Modeling of Computer Systems, pp. 221-233.

W3Techs, 2019. Usage Statistics and Market Share of Server-side Programming Languages for Websites.

[Online]

Available at: https://w3techs.com/technologies/overview/programming_language/all

[Accessed 7 August 2019].

Whitman, M. & Mattord, H., 2014. Principles of Information Security. 4th ed. Massachusetts, USA: CENGAGE

Learning Custom Publishing.

Wögerer, W., 2005. A Survey of Static Program Analysis Techniques - Technische Universität Wien, s.l.: s.n.

Woschek, M., 2015. OWASP Cheat Sheets, s.l.: s.n.

Yuschuk, O., 2014. OllyDbg. [Online]

Available at: http://www.ollydbg.de/

[Accessed 21 July 2019].

Zaharia, A., 2019. 300+ Terrifying Cybercrime and Cybersecurity Statistics & Trends [2019 EDITION]. [Online]

Available at: https://www.comparitech.com/vpn/cybersecurity-cyber-crime-statistics-facts-trends/

[Accessed 4 August 2019].

Web-Based Static Source Code Analysis Shaun Webb

79

Zahger, D., 2017. Static Code Analysis: Binary vs. Source. [Online]

Available at: https://www.checkmarx.com/2017/11/21/static-code-analysis-binary-vs-source/

[Accessed 21 July 2019].

Zorabedian, J., 2017. What Developers Need to Know About the State of Software Security Today. [Online]

Available at: https://www.veracode.com/blog/secure-development/what-developers-need-know-about-state-

software-security-today

[Accessed 4 August 2019].

Zorabedian, J., 2017. What Developers Need to Know About the State of Software Security Today. [Online]

Available at: https://www.veracode.com/blog/secure-development/what-developers-need-know-about-state-

software-security-today

[Accessed 4 August 2019].

Zorz, Z., 2019. How are businesses facing the cybersecurity challenges of increasing cloud adoption?. [Online]

Available at: https://www.helpnetsecurity.com/2019/02/21/enterprise-cloud-adoption-security/

[Accessed 20 July 2019].

